【題目】如圖所示,在中, 的中點為,且,點在的延長線上,且.固定邊,在平面內移動頂點,使得圓與邊,邊的延長線相切,并始終與的延長線相切于點,記頂點的軌跡為曲線.以所在直線為軸, 為坐標原點如圖所示建立平面直角坐標系.
(Ⅰ)求曲線的方程;
(Ⅱ)設動直線交曲線于兩點,且以為直徑的圓經過點,求面積的取值范圍.
【答案】(Ⅰ);(Ⅱ).
【解析】【試題分析】(1)依據題設條件運用橢圓的定義進行分析探求;(2)借助題設條件運用直線與橢圓的位置關系進行分析求解:
(Ⅰ)依題意得,設動圓與邊的延長線相切于,與邊相切于, 則
所以
所以點軌跡是以為焦點,長軸長為4的橢圓,且挖去長軸的兩個頂點.則曲線的方程為.
由于曲線要挖去長軸兩個頂點,所以直線斜率存在且不為,所以可設直線
由得,,同理可得: ,;
所以,
又,所以令,
則且,所以
又,所以,
所以,
所以,所以,
所以面積的取值范圍為.
【法二】
依題意得直線斜率不為0,且直線不過橢圓的頂點,則可設直線: ,且。
設,又以為直徑的圓經過點,則,所以
由得,則
且,所以
又
代入①得: ,所以,
代入②得: 恒成立所以且.
又;
點到直線的距離為,
所以
(Ⅰ)當時, ;
(Ⅱ)當且時,
,
又,當且僅當時取“”,所以,
所以,所以,
所以,所以;
綜合(1),(2)知.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,正四棱錐P﹣ABCD中,側棱PA與底面ABCD所成的角的正切值為.
(1)求側面PAD與底面ABCD所成的二面角的大;
(2)若E是PB的中點,求異面直線PD與AE所成角的正切值;
(3)問在棱AD上是否存在一點F,使EF⊥側面PBC,若存在,試確定點F的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正項數(shù)列{an}的前n項和為Sn , 數(shù)列{an}滿足,2Sn=an(an+1).
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{ }的前n項和為An , 求證:對任意正整數(shù)n,都有An< 成立;
(3)數(shù)列{bn}滿足bn=( )nan , 它的前n項和為Tn , 若存在正整數(shù)n,使得不等式(﹣2)n﹣1λ<Tn+ ﹣2n﹣1成立,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心在坐標原點,焦點在軸上,左頂點為,左焦點為,點在橢圓上,直線與橢圓交于, 兩點,直線, 分別與軸交于點, .
(Ⅰ)求橢圓的方程;
(Ⅱ)以為直徑的圓是否經過定點?若經過,求出定點的坐標;若不經過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,多面體中,四邊形是菱形, , 相交于, ,點在平面上的射影恰好是線段的中點.
(Ⅰ)求證: 平面;
(Ⅱ)若直線與平面所成的角為,求平面與平面所成角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)的定義域為D,滿足:①f(x)在D內是單調函數(shù);②存在[ ]D,使得f(x)在[ ]上的值域為[a,b],那么就稱函數(shù)y=f(x)為“優(yōu)美函數(shù)”,若函數(shù)f(x)=logc(cx﹣t)(c>0,c≠1)是“優(yōu)美函數(shù)”,則t的取值范圍為( )
A.(0,1)
B.(0, )
C.(﹣∞, )
D.(0, )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(1,2), =(cosα,sinα),設 = ﹣t (t為實數(shù)).
(1)t=1 時,若 ∥ ,求2cos2α﹣sin2α的值;
(2)若α= ,求| |的最小值,并求出此時向量 在 方向上的投影.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an},滿足a1=1, ,n∈N* . (Ⅰ)求證:數(shù)列 為等差數(shù)列;
(Ⅱ)設 ,求T2n .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com