【題目】圖1是由和組成的一個平面圖形,其中是的高,,,,將和分別沿著,折起,使得與重合于點(diǎn)B,G為的中點(diǎn),如圖2.
(1)求證:平面平面;
(2)若,求點(diǎn)C到平面的距離.
【答案】(1)見解析;(2).
【解析】
(1)根據(jù)線面垂直的判定定理,先證明平面,再由面面垂直的判定定理,即可證明結(jié)論成立;
(2)先根據(jù)題中數(shù)據(jù),由等體積法,求得,設(shè)點(diǎn)C到平面的距離為,再由,即可求出結(jié)果.
(1)證明:在圖1中,因?yàn)?/span>是的高,所以,,
所以在圖2中,,,
又因?yàn)?/span>,,平面,
所以平面,
因?yàn)?/span>平面,
所以平面平面.
(2)解:因?yàn)?/span>,,,
所以,所以,
因?yàn)?/span>,,
所以,,
所以,所以,
因?yàn)?/span>G為的中點(diǎn),所以,同理,
所以,
又,
設(shè)點(diǎn)C到平面的距離為,
因?yàn)?/span>,
所以,所以,
所以點(diǎn)C到平面的距離為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)動點(diǎn)與點(diǎn),連線的斜率之積為.
(1)求動點(diǎn)的軌跡的方程;
(2)過點(diǎn)的直線與曲線交于,兩點(diǎn),直線,與直線分別交于,兩點(diǎn).求證:以為直徑的圓恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】各項(xiàng)為正數(shù)的數(shù)列如果滿足:存在實(shí)數(shù),對任意正整數(shù)n,恒成立,且存在正整數(shù)n,使得或成立,則稱數(shù)列為“緊密數(shù)列”,k稱為“緊密數(shù)列”的“緊密度”.已知數(shù)列的各項(xiàng)為正數(shù),前n項(xiàng)和為,且對任意正整數(shù)n,(A,B,C為常數(shù))恒成立.
(1)當(dāng),,時,
①求數(shù)列的通項(xiàng)公式;
②證明數(shù)列是“緊密度”為3的“緊密數(shù)列”;
(2)當(dāng)時,已知數(shù)列和數(shù)列都為“緊密數(shù)列”,“緊密度”分別為,,且,,求實(shí)數(shù)B的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O:x2+y2=3,直線PA與圓O相切于點(diǎn)A,直線PB垂直y軸于點(diǎn)B,且|PB|=2|PA|.
(1)求點(diǎn)P的軌跡E的方程;
(2)過點(diǎn)(1,0)且與x軸不重合的直線與軌跡E相交于P,Q兩點(diǎn),在x軸上是否存在定點(diǎn)D,使得x軸是∠PDQ的角平分線,若存在,求出D點(diǎn)坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,
(1)求的單調(diào)區(qū)間;
(2)若,在其公共點(diǎn)處切線相同,求實(shí)數(shù)a的值;
(3)記,若函數(shù)存在兩個零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,大擺錘是一種大型游樂設(shè)備,常見于各大游樂園.游客坐在圓形的座艙中,面向外.通常大擺錘以壓肩作為安全束縛,配以安全帶作為二次保險.座艙旋轉(zhuǎn)的同時,懸掛座艙的主軸在電機(jī)的驅(qū)動下做單擺運(yùn)動.今年五一,小明去某游樂園玩“大擺錘”,他坐在點(diǎn)A處,“大擺錘”啟動后,主軸在平面內(nèi)繞點(diǎn)O左右擺動,平面與水平地面垂直,擺動的過程中,點(diǎn)A在平面內(nèi)繞點(diǎn)B作圓周運(yùn)動,并且始終保持,.已知,在“大擺錘”啟動后,給出下列結(jié)論:
①點(diǎn)A在某個定球面上運(yùn)動;
②線段在水平地面上的正投影的長度為定值;
③直線與平面所成角的正弦值的最大值為;
④與水平地面所成角記為,直線與水平地面所成角記為,當(dāng)時,為定值.
其中正確結(jié)論的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:.
Ⅰ直線l的參數(shù)方程化為極坐標(biāo)方程;
Ⅱ求直線l與曲線C交點(diǎn)的極坐標(biāo)其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,定義:以橢圓中心為圓心,長軸為直徑的圓叫做橢圓的“輔助圓”.過橢圓第四象限內(nèi)一點(diǎn)M作x軸的垂線交其“輔助圓”于點(diǎn)N,當(dāng)點(diǎn)N在點(diǎn)M的下方時,稱點(diǎn)N為點(diǎn)M的“下輔助點(diǎn)”.已知橢圓E:上的點(diǎn)的下輔助點(diǎn)為(1,﹣1).
(1)求橢圓E的方程;
(2)若△OMN的面積等于,求下輔助點(diǎn)N的坐標(biāo);
(3)已知直線l:x﹣my﹣t=0與橢圓E交于不同的A,B兩點(diǎn),若橢圓E上存在點(diǎn)P,滿足,求直線l與坐標(biāo)軸圍成的三角形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,PA⊥平面ABCD,E為BD的中點(diǎn),G為PD的中點(diǎn),,,,連接CE并延長交AD于F.
(1)求證:AD⊥平面CFG;
(2)求平面BCP與平面DCP的夾角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com