10.函數(shù)f(x)=21-|x|的值域是(  )
A.(0,+∞)B.(-∞,2]C.(0,2]D.[$\frac{1}{2}$,2]

分析 根據(jù)復(fù)合函數(shù)的性質(zhì),分解成基本函數(shù)來(lái)求解.

解答 解:由題意:函數(shù)f(x)=21-|x|,
∵令u=1-|x|的值域?yàn)閇1,-∞),
則:f(x)=2u是單調(diào)增函數(shù),
∴當(dāng)u=1時(shí),函數(shù)f(x)取得最大值為2,
故得函數(shù)f(x)=21-|x|的值域(0,2].
故選C.

點(diǎn)評(píng) 本題考查了復(fù)合函數(shù)的值域求法.需分解成基本函數(shù),再求解.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù):
x3456
y2.5344.5
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=bx+a;
(2)求出R2檢驗(yàn)所求回歸方程是否可靠;
(3)進(jìn)行殘差分析.
(4)試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗是多少?lài)崢?biāo)準(zhǔn)煤?
(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)
$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$         $\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$    R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=x3-3x2+1,g(x)=$\left\{\begin{array}{l}{x^2}-x+\frac{5}{4},x>0\\-{x^2}-6x-8,x≤0.\end{array}$則函數(shù)h(x)=g(f(x))-a(a為正常數(shù))的零點(diǎn)個(gè)數(shù)最多為( 。
A.2B.4C.9D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.306、522的最大公約數(shù)為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.平面直角坐標(biāo)系中,以原點(diǎn)O為圓心,r(r>0)為半徑的定圓C1,與過(guò)原點(diǎn)且斜率為k(k≠0)的動(dòng)直線交于P、Q兩點(diǎn),在x軸正半軸上有一個(gè)定點(diǎn)R(m,0),P、Q、R三點(diǎn)構(gòu)成三角形,求:
(1)△PQR的面積S1的表達(dá)式,并求出S1的取值范圍;
(2)△PQR的外接圓C2的面積S2的表達(dá)式,并求出S2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.log3$\sqrt{27}$+lg25+lg4-7${\;}^{lo{g}_{7}2}$-(-9.8)0=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知數(shù)列{an}是等比數(shù)列前n項(xiàng)和是Sn,若a2=2,a3=-4,則S5等于( 。
A.8B.-8C.11D.-11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.橢圓C的焦點(diǎn)在x軸上,一個(gè)頂點(diǎn)是拋物線E:y2=16x的焦點(diǎn),過(guò)焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為2,則橢圓的離心率為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{14}}{4}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知銳角θ滿足sin(${\frac{θ}{2}$+$\frac{π}{6}}$)=$\frac{4}{5}$,則cos(θ+$\frac{5π}{6}}$)的值為$-\frac{24}{25}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案