分析 求出函數(shù)的導(dǎo)數(shù),求得切線的斜率和切點,由點斜式方程可得切線的方程.
解答 解:函數(shù)f(x)=lnx-x+1的導(dǎo)數(shù)為f′(x)=$\frac{1}{x}$-1,
x=2,切線斜率為k=-$\frac{1}{2}$,
∵切點為(2,ln2-1),
可得函數(shù)f(x)的圖象在點x=2處的切線方程為y-ln2+1=-$\frac{1}{2}$(x-2),
即為x+2y-2ln2=0.
故答案為x+2y-2ln2=0.
點評 本題考查導(dǎo)數(shù)的運用:求切線的方程,正確求導(dǎo)和運用直線方程是解題的關(guān)鍵,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{3}$ | B. | $2\sqrt{3}$ | C. | $\sqrt{3}$ | D. | $\frac{{\sqrt{2}}}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | b>c>a | C. | c>a>b | D. | b>a>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | -1 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a3>b3 | B. | |a|<|b| | C. | $\frac{1}{a}$>$\frac{1}$ | D. | $\frac{1}{a}$<$\frac{1}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com