14.已知命題p:方程x2-2ax-1=0有兩個(gè)實(shí)數(shù)根;命題q:函數(shù)f(x)=x+$\frac{4}{x}$的最小值為4.給出下列命題:
①p∧q;②p∨q;③p∧¬q;④¬p∨¬q.
則其中真命題的個(gè)數(shù)為(  )
A.1B.2C.3D.4

分析 先判定命題p,q的真假,再利用復(fù)合命題真假的判定方法即可得出.

解答 解:命題p:方程x2-2ax-1=0有兩個(gè)實(shí)數(shù)根,?a∈R,可得△≥0,因此是真命題.
命題q:x<0時(shí),函數(shù)f(x)=x+$\frac{4}{x}$<0,因此是假命題.
下列命題:①p∧q是假命題;②p∨q是真命題;③p∧¬q是真命題;④¬p∨¬q是真命題.
則其中真命題的個(gè)數(shù)為3.
故選:C.

點(diǎn)評(píng) 本題考查了函數(shù)的性質(zhì)、一元二次方程的實(shí)數(shù)根與判別式的關(guān)系、復(fù)合命題真假的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知下面三個(gè)命題:
①“若xy=0,則x=0且y=0”的逆否命題;
②“正方形是菱形”的否命題;
③“若m>2,則不等式x2-2x+m>0的解集為R”.
其中真命題的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若直線y=k(x-2)+4與曲線y=$\sqrt{4-{x^2}}$有兩個(gè)交點(diǎn),則k的取值范圍是( 。
A.[1,+∞)B.$[{-1,-\frac{3}{4}})$C.$({\frac{3}{4},1}]$D.(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,則下列說(shuō)法正確的是( 。
A.若m∥α,n∥α,則m∥nB.若m∥α,m∥β,則α∥β
C.若m∥n,m∥α,n?α,則n∥αD.若m∥α,α∥β,則m∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)函數(shù)f(x)=ax+xeb-x(其中a,b為常數(shù)),函數(shù)y=f(x)在點(diǎn)(2,2e+2)處的切線的斜率為e-1.
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.某單位要在4名員工(含甲、乙兩人)中隨機(jī)選2名到某地出差,則甲、乙兩人中,至少有一人被選中的概率是$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知m∈R,直線l:mx-(m2+1)y-4m=0和圓C:x2+y2-8x+4y+16=0.
(1)求直線l的斜率k的取值范圍;
(2)是否存在直線l和圓C交于M,N兩點(diǎn),且M,N把圓弧分割成1:3的兩部分?如果存在,求出該直線l的方程,如不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.己知函數(shù)f(x)=lnx-x+1.則函數(shù)f(x)的圖象在點(diǎn)x=2處的切線方程x+2y-2ln2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=sin(${\frac{π}{2}$x)-1-logax({0<a<1)至少有5個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.(0,$\frac{\sqrt{7}}{7}$)B.($\frac{\sqrt{7}}{7}$,1)C.($\frac{\sqrt{5}}{5}$,1)D.(0,$\frac{\sqrt{5}}{5}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案