【題目】下列說法正確的有_________.
①函數(shù)的一個對稱中心為;
②在中, 是的中點,則;
③在中, 是的充要條件;
④定義,已知,則的最大值為.
【答案】①②③④
【解析】
①對于函數(shù),令,求得,故函數(shù)的圖象的一個對稱中心為,故①正確;②在中, 是的中點,則,故②正確;③在中, ,等價于,等價于,等價于,等價于,等價于,故③正確;④定義,已知,畫出和的圖象,如圖所示,則由圖可知,當時, 取得最大值為,故④正確,故答案為①②③④.
【 方法點睛】本題主要通過對多個命題真假的判斷,主要綜合考查向量的線性運算及三角函數(shù)的圖象與性質(zhì),屬于難題.這種題型綜合性較強,也是高考的命題熱點,同學們往往因為某一處知識點掌握不好而導(dǎo)致“全盤皆輸”,因此做這類題目更要細心、多讀題,盡量挖掘出題目中的隱含條件,另外,要注意從簡單的自己已經(jīng)掌握的知識點入手,然后集中精力突破較難的命題.
科目:高中數(shù)學 來源: 題型:
【題目】隨著人們對環(huán)境關(guān)注度的提高,綠色低碳出行越來越受到市民重視. 為此貴陽市建立了公共自行車服務(wù)系統(tǒng),市民憑本人二代身份證到自行車服務(wù)中心辦理誠信借車卡借車,初次辦卡時卡內(nèi)預(yù)先贈送20積分,當積分為0時,借車卡將自動鎖定,限制借車,用戶應(yīng)持卡到公共自行車服務(wù)中心以1元購1個積分的形式再次激活該卡,為了鼓勵市民租用公共自行車出行,同時督促市民盡快還車,方便更多的市民使用,公共自行車按每車每次的租用時間進行扣分收費,具體扣分標準如下:
①租用時間不超過1小時,免費;
②租用時間為1小時以上且不超過2小時,扣1分;
③租用時間為2小時以上且不超過3小時,扣2分;
④租用時間超過3小時,按每小時扣2分收費(不足1小時的部分按1小時計算).
甲、乙兩人獨立出行,各租用公共自行車一次,兩人租車時間都不會超過3小時,設(shè)甲、乙租用時間不超過1小時的概率分別是0.4和0.5;租用時間為1小時以上且不超過2小時的概率分別是0.4和0.3.
(1)求甲、乙兩人所扣積分相同的概率;
(2)設(shè)甲、乙兩人所扣積分之和為隨機變量,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù).
(1)試說明的圖象由函數(shù)的圖象經(jīng)過怎樣的變化得到?并求的單調(diào)區(qū)間;
(2)若函數(shù)與的圖象關(guān)于直線對稱,當時,求函數(shù)的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)進入某商場的每一位顧客購買甲種商品的概率為0.5,購買乙種商品的概率為0.6,且購買甲種商品與購買乙種商品相互獨立,各顧客之間購買商品也是相互獨立的.
(1)求進入商場的1位顧客購買甲、乙兩種商品中的一種的概率;
(2)求進入商場的1位顧客至少購買甲、乙兩種商品中的一種的概率;
(3)記ξ表示進入商場的3位顧客中至少購買甲、乙兩種商品中的一種的人數(shù),求ξ的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的極坐標方程為,曲線的參數(shù)方程為,( 為參數(shù)).
(1)將兩曲線化成普通坐標方程;
(2)求兩曲線的公共弦長及公共弦所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】實數(shù)m取什么數(shù)值時,復(fù)數(shù)z=m2﹣1+(m2﹣m﹣2)i分別是:
(1)實數(shù)?
(2)虛數(shù)?
(3)純虛數(shù)?
(4)表示復(fù)數(shù)z的點在復(fù)平面的第四象限?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(x)是定義域為R的偶函數(shù),當x≥0時,f(x)= ,若關(guān)于x的方程[f(x)]2+af(x)﹣a﹣1=0(a∈R)有且只有7個不同實數(shù)根,則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C對邊的邊長分別是a,b,c,已知c=2,C= . (Ⅰ)若△ABC的面積等于 ,求a,b;
(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com