【題目】如圖,在邊長(zhǎng)為的正方形中,線段BC的端點(diǎn)分別在邊、上滑動(dòng),且,現(xiàn)將,分別沿AB,AC折起使點(diǎn)重合,重合后記為點(diǎn),得到三被錐.現(xiàn)有以下結(jié)論:

平面;

②當(dāng)分別為、的中點(diǎn)時(shí),三棱錐的外接球的表面積為;

的取值范圍為;

④三棱錐體積的最大值為.

則正確的結(jié)論的個(gè)數(shù)為( )

A.B.C.D.

【答案】C

【解析】

根據(jù)題意得,折疊成的三棱錐PABC的三條側(cè)棱滿足PAPB、PAPC,由線面垂直的判斷定理得①正確;三棱錐PABC的外接球的直徑等于以PA、PBPC為長(zhǎng)、寬、高的長(zhǎng)方體的對(duì)角線長(zhǎng),由此結(jié)合AP2、BPCP1,得外接球的半徑R,由此得三棱錐PABC的外接球的體積,故②正確;由題意得,,在中,由邊長(zhǎng)關(guān)系得,故③正確;由等體積轉(zhuǎn)化計(jì)算即可,故④錯(cuò)誤.

由題意得,折疊成的三棱錐PABC三條側(cè)棱滿足PAPBPAPC,

在①中,由PAPB,PAPC,且PB PC,所以平面成立,故①正確;

在②中,當(dāng)分別為、的中點(diǎn)時(shí),三棱錐PABC三條側(cè)棱兩兩垂直,三棱錐PABC的外接球直徑等于以PA、PB、PC為長(zhǎng)、寬、高的長(zhǎng)方體的對(duì)角線長(zhǎng),結(jié)合AP2BPCP,

得外接球的半徑R,所以外接球的表面積為,故②正確;

在③中,正方形的邊長(zhǎng)為2,所以,,在中,由邊長(zhǎng)關(guān)系得+,解得,故③正確;

在④中,正方形的邊長(zhǎng)為2,且,則,

所以上遞減,無(wú)最大值,故④錯(cuò)誤.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年中秋節(jié)到來(lái)之際,某超市為了解中秋節(jié)期間月餅的銷售量,對(duì)其所在銷售范圍內(nèi)的1000名消費(fèi)者在中秋節(jié)期間的月餅購(gòu)買量單位:進(jìn)行了問卷調(diào)查,得到如下頻率分布直方圖:

求頻率分布直方圖中a的值;

以頻率作為概率,試求消費(fèi)者月餅購(gòu)買量在的概率;

已知該超市所在銷售范圍內(nèi)有20萬(wàn)人,并且該超市每年的銷售份額約占該市場(chǎng)總量的,請(qǐng)根據(jù)這1000名消費(fèi)者的人均月餅購(gòu)買量估計(jì)該超市應(yīng)準(zhǔn)備多少噸月餅恰好能滿足市場(chǎng)需求頻率分布直方圖中同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】幾位大學(xué)生響應(yīng)國(guó)家的創(chuàng)業(yè)號(hào)召,開發(fā)了三款軟件,為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了解數(shù)學(xué)題獲取軟件激活碼的活動(dòng),這三款軟件的激活碼分別為下面數(shù)學(xué)問題的三個(gè)答案:已知數(shù)列,其中第一項(xiàng)是,接下來(lái)的兩項(xiàng)是,再接下來(lái)的三項(xiàng)是,以此類推,試根據(jù)下列條件求出三款軟件的激活碼

1A款應(yīng)用軟件的激活碼是該數(shù)列中第四個(gè)三位數(shù)的項(xiàng)數(shù)的平方

2B款應(yīng)用軟件的激活碼是該數(shù)列中第一個(gè)四位數(shù)及其前所有項(xiàng)的和

3C款應(yīng)用軟件的激活碼是滿足如下條件的最小整數(shù):①;②該數(shù)列的前項(xiàng)和為2的整數(shù)冪

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某公園有三個(gè)警衛(wèi)室、有直道相連,千米,千米,千米.

(1)保安甲沿從警衛(wèi)室出發(fā)行至點(diǎn)處,此時(shí),求的直線距離;

(2)保安甲沿從警衛(wèi)室出發(fā)前往警衛(wèi)室,同時(shí)保安乙沿從警衛(wèi)室出發(fā)前往警衛(wèi)室,甲的速度為1千米/小時(shí),乙的速度為2千米/小時(shí),若甲乙兩人通過對(duì)講機(jī)聯(lián)系,對(duì)講機(jī)在公園內(nèi)的最大通話距離不超過3千米,試問有多長(zhǎng)時(shí)間兩人不能通話?(精確到0.01小時(shí))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若存在,使得關(guān)于的不等式恒成立,則的取值范圍為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓:的右焦點(diǎn)為,過點(diǎn)的直線(不與軸重合)與橢圓相交于,兩點(diǎn),直線軸相交于點(diǎn),過點(diǎn),垂足為D.

1)求四邊形為坐標(biāo)原點(diǎn))面積的取值范圍;

2)證明直線過定點(diǎn),并求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司有1000名員工,其中男性員工400名,采用分層抽樣的方法隨機(jī)抽取100名員工進(jìn)行5G手機(jī)購(gòu)買意向的調(diào)查,將計(jì)劃在今年購(gòu)買5G手機(jī)的員工稱為追光族",計(jì)劃在明年及明年以后才購(gòu)買5G手機(jī)的員工稱為觀望者,調(diào)查結(jié)果發(fā)現(xiàn)抽取的這100名員工中屬于追光族的女性員工和男性員工各有20.

1)完成下列列聯(lián)表,并判斷是否有95%的把握認(rèn)為該公司員工屬于追光族"性別"有關(guān);

屬于追光族"

屬于觀望者"

合計(jì)

女性員工

男性員工

合計(jì)

100

2)已知被抽取的這100名員工中有10名是人事部的員工,這10名中有3名屬于追光族”.現(xiàn)從這10名中隨機(jī)抽取3名,記被抽取的3名中屬于追光族的人數(shù)為隨機(jī)變量X,求的分布列及數(shù)學(xué)期望.

,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市教育部門為了了解全市高一學(xué)生的身高發(fā)育情況,從本市全體高一學(xué)生中隨機(jī)抽取了100人的身高數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析。經(jīng)數(shù)據(jù)處理后,得到了如下圖1所示的頻事分布直方圖,并發(fā)現(xiàn)這100名學(xué)生中,身不低于1.69米的學(xué)生只有16名,其身高莖葉圖如下圖2所示,用樣本的身高頻率估計(jì)該市高一學(xué)生的身高概率.

(I)求該市高一學(xué)生身高高于1.70米的概率,并求圖1中的值.

(II)若從該市高一學(xué)生中隨機(jī)選取3名學(xué)生,記為身高在的學(xué)生人數(shù),求的分布列和數(shù)學(xué)期望;

(Ⅲ)若變量滿足,則稱變量滿足近似于正態(tài)分布的概率分布.如果該市高一學(xué)生的身高滿足近似于正態(tài)分布的概率分布,則認(rèn)為該市高一學(xué)生的身高發(fā)育總體是正常的.試判斷該市高一學(xué)生的身高發(fā)育總體是否正常,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】明初出現(xiàn)了一大批杰出的騎兵將領(lǐng),比如徐達(dá)、常遇春、李文忠、藍(lán)玉和朱棣.明初騎兵軍團(tuán)擊敗了不可一世的蒙古騎兵,是當(dāng)時(shí)世界上最強(qiáng)騎兵軍團(tuán).假設(shè)在明軍與元軍的某次戰(zhàn)役中,明軍有8位將領(lǐng),善用騎兵的將領(lǐng)有5人;元軍有8位將領(lǐng),善用騎兵的有4人.

1)現(xiàn)從明軍將領(lǐng)中隨機(jī)選取4名將領(lǐng),求至多有3名是善用騎兵的將領(lǐng)的概率;

2)在明軍和元軍的將領(lǐng)中各隨機(jī)選取2人,為善用騎兵的將領(lǐng)的人數(shù),寫出的分布列,并求.

查看答案和解析>>

同步練習(xí)冊(cè)答案