【題目】已知橢圓:的右焦點(diǎn)為,過點(diǎn)的直線(不與軸重合)與橢圓相交于,兩點(diǎn),直線:與軸相交于點(diǎn),過點(diǎn)作,垂足為D.
(1)求四邊形(為坐標(biāo)原點(diǎn))面積的取值范圍;
(2)證明直線過定點(diǎn),并求出點(diǎn)的坐標(biāo).
【答案】(1);(2)證明見解析,
【解析】
(1)由題意設(shè)直線AB的方程,代入橢圓整理得縱坐標(biāo)之和與之積,將四邊形的面積分成2個(gè)三角形,根據(jù)底相同,列出關(guān)于面積的函數(shù)式,再結(jié)合均值不等式可得面積的取值范圍;
(2)由(1)得B,D的坐標(biāo),設(shè)直線BD 的方程,令縱坐標(biāo)為零得橫坐標(biāo)是定值,即直線BD過定點(diǎn).
(1)由題F(1,0),設(shè)直線AB:,
聯(lián)立,消去x,得,
因?yàn)?/span>,,
則
所以四邊形OAHB的面積,
令
因?yàn)?/span>(當(dāng)且僅當(dāng)t=1即m=0時(shí)取等號(hào)),所以,
所以四邊形OAHB的面積取值范圍為;
(2),所以直線BD的斜率,所以直線BD的方程為,
令y=0,可得①
由(1)可得
化簡①可得
則直線BD過定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中已知橢圓過點(diǎn),其左、右焦點(diǎn)分別為,離心率為.
(1)求橢圓E的方程;
(2)若A,B分別為橢圓E的左、右頂點(diǎn),動(dòng)點(diǎn)M滿足,且MA交橢圓E于點(diǎn)P.
(i)求證:為定值;
(ii)設(shè)PB與以PM為直徑的圓的另一交點(diǎn)為Q,問:直線MQ是否過定點(diǎn),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,,,,,且為的中點(diǎn),延長交于點(diǎn),且在底內(nèi)的射影恰為的中點(diǎn),為的中點(diǎn),為上任意一點(diǎn).
(1)證明:平面平面;
(2)求平面與平面所成銳角二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為的正方形中,線段BC的端點(diǎn)分別在邊、上滑動(dòng),且,現(xiàn)將,分別沿AB,AC折起使點(diǎn)重合,重合后記為點(diǎn),得到三被錐.現(xiàn)有以下結(jié)論:
①平面;
②當(dāng)分別為、的中點(diǎn)時(shí),三棱錐的外接球的表面積為;
③的取值范圍為;
④三棱錐體積的最大值為.
則正確的結(jié)論的個(gè)數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知是曲線:上的動(dòng)點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,設(shè)點(diǎn)的軌跡為曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線,的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,點(diǎn),射線與曲線,分別相交于異于極點(diǎn)的兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐中,底面四邊形為平行四邊形,為的中點(diǎn),為上一點(diǎn),且(如圖).
(1)證明:平面;
(2)當(dāng)平面平面,,時(shí),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,且圓經(jīng)過橢圓C的上、下頂點(diǎn).
(1)求橢圓C的方程;
(2)若直線l與橢圓C相切,且與橢圓相交于M,N兩點(diǎn),證明:的面積為定值(O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,直線與橢圓在第一象限內(nèi)的交點(diǎn)是,點(diǎn)在軸上的射影恰好是橢圓的右焦點(diǎn),橢圓另一個(gè)焦點(diǎn)是,且.
(1)求橢圓的方程;
(2)直線過點(diǎn),且與橢圓交于兩點(diǎn),求的內(nèi)切圓面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com