17.若|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=1,|$\overrightarrow{c}$|=$\sqrt{3}$,且$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow$•$\overrightarrow{c}$的最大值是( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.3

分析 求出|$\overrightarrow{a}+\overrightarrow$|,根據(jù)數(shù)量積的定義即可得出最大值.

解答 解:($\overrightarrow{a}+\overrightarrow$)2=${\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow+{\overrightarrow}^{2}$=3,
∴|$\overrightarrow{a}+\overrightarrow$|=$\sqrt{3}$,
∴$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow$•$\overrightarrow{c}$=($\overrightarrow{a}+\overrightarrow$)$•\overrightarrow{c}$=|$\overrightarrow{a}+\overrightarrow$||$\overrightarrow{c}$|cosθ≤|$\overrightarrow{a}+\overrightarrow$||$\overrightarrow{c}$|=3.
故選:D.

點評 本題考查了平面向量的數(shù)量積運算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若同時擲兩顆均勻的骰子,則所得點數(shù)之和大于4的概率等于$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.按如圖所示的程序框圖,若輸入a=81,則輸出的i=(  )
A.14B.17C.19D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>b>0})$與雙曲線${C_2}:{x^2}-\frac{y^2}{2}=1$的離心率相同,雙曲線C1的左、右焦點分別為F1,F(xiàn)2,M是雙曲線C1的一條漸近線上的點,且OM⊥MF2,若△OMF2的面積為$2\sqrt{2}$,則雙曲線C1的實軸長是( 。
A.32B.16C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知全集U=R,集合A={x|-3≤x≤1},集合B=$\left\{{x\left|{{2^x}<\frac{1}{4}}\right.}\right\}$,則A∩(∁UB)=( 。
A.{x|-2<x<1}B.{x|-3≤x<-2}C.{x|-2≤x≤1}D.{x|-3≤x≤-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,且過點(1,$\frac{\sqrt{3}}{2}$).
(Ⅰ)求E的方程;
(Ⅱ)是否存在直線l:y=kx+m相交于P,Q兩點,且滿足:①OP與OQ(O為坐標(biāo)原點)的斜率之和為2;②直線l與圓x2+y2=1相切.若存在,求出l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2,直線y=x被橢圓C截得的弦長為$\frac{4\sqrt{3}}{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點M(x0,y0)是橢圓C上的動點,過原點O引兩條射線l1,l2與圓M:(x-x02+(y-y02=$\frac{2}{3}$分別相切,且l1,l2的斜率k1,k2存在.
①試問k1•k2是否定值?若是,求出該定值,若不是,說明理由;
②若射線l1,l2與橢圓C分別交于點A,B,求|OA|•|OB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知a,b,c為正實數(shù),且a+b+c=3,證明:$\frac{{c}^{2}}{a}$+$\frac{{a}^{2}}$+$\frac{^{2}}{c}$≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知向量$\overrightarrow{a}$=(sin(π+ωx),2cosωx),$\overrightarrow$=(2$\sqrt{3}$sin($\frac{π}{2}$+ωx),cosωx),(ω>0),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,其圖象上相鄰的兩個最低點之間的距離為π.
(Ⅰ)求函數(shù)f(x)的對稱中心;
(Ⅱ)在銳角△ABC中,角A、B、C的對邊分別為a、b、c,tanB=$\frac{\sqrt{3}ac}{{a}^{2}+{c}^{2}-^{2}}$,求f(A)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案