6.若鈍角三角形ABC三邊長(zhǎng)分別是a,a+1,a+2,則a的取值范圍(1,3).

分析 由已知利用大邊對(duì)大角,余弦定理可得$\frac{{a}^{2}-2a-3}{2a(a+1)}$<0,解不等式組可得:-1<a<3,利用三角形兩邊之和大于第三邊可解得:a>1,即可得解.

解答 解:∵鈍角三角形三邊長(zhǎng)為a,a+1,a+2,
∴a+2對(duì)的角為鈍角,設(shè)為α,
∴cosα=$\frac{{a}^{2}+(a+1)^{2}-(a+2)^{2}}{2a(a+1)}$=$\frac{{a}^{2}-2a-3}{2a(a+1)}$<0,
解得:-1<a<3,
由a+a+1>a+2,解得:a>1,
則a的取值范圍為(1,3).
故答案為:(1,3)

點(diǎn)評(píng) 本題主要考查了大邊對(duì)大角,余弦定理,不等式組的解法,三角形兩邊之和大于第三邊等知識(shí)在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.對(duì)任意復(fù)數(shù)ω1,ω2,定義ω121$\overline{{ω}_{2}}$,其中$\overline{{ω}_{2}}$是ω2的共軛復(fù)數(shù).
對(duì)任意復(fù)數(shù)z1,z2,z3,有如下三個(gè)命題:
①(z1+z2)*z3=(z1*z3)+(z2*z3); ②(z1*z2)*z3=z1*(z2*z3); ③z1*z2=z2*z1;.
則真命題的個(gè)數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知直線(xiàn)m,n與平面α,β,下列四個(gè)命題為真命題的是(  )
A.若m∥α,n∥α,則m∥nB.若m⊥α,n⊥α,則m∥n
C.若m∥α,n∥α,β∥α,則m∥nD.若m∥n,m∥α,則n∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.某農(nóng)戶(hù)計(jì)劃種植黃瓜和韭菜,種植面積不超過(guò)50畝,投入資金不超過(guò)54萬(wàn)元,假設(shè)種植黃瓜和韭菜的產(chǎn)量、成本和售價(jià)如表:
年產(chǎn)量/畝年種植成本/畝每噸售價(jià)
黃瓜4噸1.2萬(wàn)元0.55萬(wàn)元
韭菜5噸0.9萬(wàn)元0.3萬(wàn)元
則一年的種植總利潤(rùn)(總利潤(rùn)=總銷(xiāo)售收入-總種植成本最大值為45萬(wàn)元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.$\underset{lim}{x→+∞}$($\sqrt{{x}^{2}-x}$-$\sqrt{{x}^{2}+x}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在直棱柱ABC-A1B1C1中,平面A1BC⊥平面A1ABB1,且AA1=AB=BC=2.N為B1C1中點(diǎn).
(1)求三棱錐N-A1BC的體積.
(2)求證:AB⊥BC
(3)(文科做)求AC與平面A1BC所成角的大小.
(理科做)求銳二面角A-A1C-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.從全體3位正整數(shù)中任取一數(shù),則此數(shù)以2為底的對(duì)數(shù)也是正整數(shù)的概率為( 。
A.$\frac{1}{225}$B.$\frac{1}{300}$C.$\frac{1}{450}$D.以上全不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列函數(shù)在區(qū)間(0,+∞)內(nèi)單調(diào)遞減的是( 。
A.y=x3B.y=$\frac{1}{x-1}$C.y=log2$\frac{1}{x}$D.y=-tanx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=2x3+3ax2-12bx+3在x=-2和x=1處有極值.
(1)求出f(x)的解析式;
(2)指出f(x)的單調(diào)區(qū)間;
(3)求f(x)在[-3,2]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案