【題目】返鄉(xiāng)創(chuàng)業(yè)的大學(xué)生一直是人們比較關(guān)注的對(duì)象,他們從大學(xué)畢業(yè),沒(méi)有選擇經(jīng)濟(jì)發(fā)達(dá)的大城市,而是回到自己的家鄉(xiāng),為養(yǎng)育自己的家鄉(xiāng)貢獻(xiàn)自己的力量,在享有“國(guó)際花園城市”稱號(hào)的溫江幸福田園,就有一個(gè)由大學(xué)畢業(yè)生創(chuàng)辦的農(nóng)家院“小時(shí)代”,其獨(dú)特的裝修風(fēng)格和經(jīng)營(yíng)模式,引來(lái)無(wú)數(shù)人的關(guān)注,帶來(lái)紅紅火火的現(xiàn)狀,給青年大學(xué)生們就業(yè)創(chuàng)業(yè)上很多新的啟示.在接受采訪中,該老板談起以下情況:初期投入為72萬(wàn)元,經(jīng)營(yíng)后每年的總收入為50萬(wàn)元,第n年需要付出房屋維護(hù)和工人工資等費(fèi)用是首項(xiàng)為12,公差為4的等差數(shù)列(單位:萬(wàn)元).
(1)求;
(2)該農(nóng)家樂(lè)第幾年開始盈利?能盈利幾年?(即總收入減去成本及所有費(fèi)用之差為正值)
(3)該農(nóng)家樂(lè)經(jīng)營(yíng)多少年,其年平均獲利最大?年平均獲利的最大值是多少?(年平均獲利前年總獲利)
【答案】(1);(2)第3年開始盈利;能盈利15年;(3)經(jīng)過(guò)6年經(jīng)營(yíng)年平均獲利最大,最大值為16萬(wàn)元.
【解析】
(1)利用等差數(shù)列的通項(xiàng)公式即可求解.
(2)設(shè)農(nóng)家樂(lè)第n年后開始盈利,盈利為y萬(wàn)元,則,令,解不等式即可.
(3)列出年平均獲利,利用基本不等式即可求解.
解:(1)由題意知,每年需付出的費(fèi)用是以12為首項(xiàng),4為公差的等差數(shù)列,
∴
(2)設(shè)該農(nóng)家樂(lè)第n年后開始盈利,盈利為y萬(wàn)元,
則
由,得,解得,
故.
即第3年開始盈利.能盈利15年.
(3)年平均獲利為
當(dāng)且僅當(dāng),即時(shí),年平均獲利最大.
故經(jīng)過(guò)6年經(jīng)營(yíng)年平均獲利最大,最大值為16萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的范圍;
(3)已知函數(shù)與函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,如果,且,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年某市有2萬(wàn)多文科考生參加高考,除去成績(jī)?yōu)?/span>分(含分)以上的3人與成績(jī)?yōu)?/span>分(不含分)以下的3836人,還有約1.9萬(wàn)文科考生的成績(jī)集中在內(nèi),其成績(jī)的頻率分布如下表所示:
分?jǐn)?shù)段 | ||||
頻率 | 0.108 | 0.133 | 0.161 | 0.183 |
分?jǐn)?shù)段 | ||||
頻率 | 0.193 | 0.154 | 0.061 | 0.007 |
(Ⅰ)試估計(jì)該次高考成績(jī)?cè)?/span>內(nèi)文科考生的平均分(精確到);
(Ⅱ)一考生填報(bào)志愿后,得知另外有4名同分?jǐn)?shù)考生也填報(bào)了該志愿.若該志愿計(jì)劃錄取3人,并在同分?jǐn)?shù)考生中隨機(jī)錄取,求該考生不被該志愿錄取的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班50位學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]
(Ⅰ)求圖中的值,并估計(jì)該班期中考試數(shù)學(xué)成績(jī)的眾數(shù);
(Ⅱ)從成績(jī)不低于90分的學(xué)生和成績(jī)低于50分的學(xué)生中隨機(jī)選取2人,求這2人成績(jī)均不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有以下四種變換方式:
向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍縱坐標(biāo)不變;
向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍縱坐標(biāo)不變;
把各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍縱坐標(biāo)不變,再向左平移個(gè)單位長(zhǎng)度;
把各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍縱坐標(biāo)不變,再向左平移個(gè)單位長(zhǎng)度;
其中能將函數(shù)的圖象變?yōu)楹瘮?shù)的圖象的是
A. 和 B. 和 C. 和 D. 和
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
(1)當(dāng)a=0時(shí),f(x)≥h(x)在(1,+∞)上恒成立,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m=2時(shí),若函數(shù)k(x)=f(x)-h(x)在區(qū)間(1,3)上恰有兩個(gè)不同零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )
A. 消耗1升汽油,乙車最多可行駛5千米
B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C. 甲車以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油
D. 某城市機(jī)動(dòng)車最高限速80千米/小時(shí). 相同條件下,在該市用丙車比用乙車更省油
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】黨的十九大報(bào)告指出,要推進(jìn)綠色發(fā)展,倡導(dǎo)“簡(jiǎn)約知適度、綠色低碳”的生活方式,開展創(chuàng)建“低碳生活,綠色出行”等行動(dòng).在這一號(hào)召下,越來(lái)越多的人秉承“能走不騎,能騎不坐,能坐不開”的出行理念,盡可能采取乘坐公交車騎自行車或步行等方式出行,減少交通擁堵,共建清潔、暢通高效的城市生活環(huán)境.某市環(huán)保機(jī)構(gòu)隨機(jī)抽查統(tǒng)計(jì)了該市部分成年市民某月騎車次數(shù),統(tǒng)計(jì)如下:
次數(shù) 人數(shù) 年齡 | ||||||
18歲至31歲 | 8 | 12 | 20 | 60 | 140 | 150 |
32歲至44歲 | 12 | 28 | 20 | 140 | 60 | 150 |
45歲至59歲 | 25 | 50 | 80 | 100 | 225 | 450 |
60歲及以上 | 25 | 10 | 10 | 19 | 4 | 2 |
聯(lián)合國(guó)世界衛(wèi)生組織于2013年確定新的年齡分段:44歲及以下為青年人,45歲至59歲為中年人,60歲及以上為老年人.
(I)若從被抽查的該月騎車次數(shù)在的老年人中隨機(jī)選出兩名幸運(yùn)者給予獎(jiǎng)勵(lì),求其中一名幸運(yùn)者該月騎車次數(shù)在之間,另一名幸運(yùn)者該月騎車次數(shù)在之間的概率;
(Ⅱ)用樣本估計(jì)總體的思想,解決如下問(wèn)題:
()估計(jì)該市在32歲至44歲年齡段的一個(gè)青年人每月騎車的平均次數(shù);
() 若月騎車次數(shù)不少于30次者稱為“騎行愛(ài)好者”,根據(jù)這些數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為“騎行愛(ài)好者”與“青年人”有關(guān)?
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,平面平面,,.設(shè),分別為,中點(diǎn).
(1)求證:平面;
(2)求證:平面;
(3)試問(wèn)在線段上是否存在點(diǎn),使得過(guò)三點(diǎn),,的平面內(nèi)的任一條直線都與平面平行?若存在,指出點(diǎn)的位置并證明;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com