【題目】已知函數(shù).
(1)求函數(shù)在點處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若存在,使得(是自然對數(shù)的底數(shù)),求實數(shù)的取值范圍.
【答案】(1);(2)單調(diào)增區(qū)間為,遞減區(qū)間為;(3).
【解析】
試題分析:(1)可得 ,又,得切線方程為;(2)求出,得增區(qū)間,得減區(qū)間;(3)存在,使得成立,等價于當(dāng)時,,所以只要即可.
試題解析:(1)因為函數(shù),
所以,
又因為,所以函數(shù)在點處的切線方程為.
(2)由(1),,
因為當(dāng)時,總有在上是增函數(shù).
又,所以不等式的解集為,
故函數(shù)的單調(diào)增區(qū)間為,遞減區(qū)間為.
(3)因為存在,使得成立,
而當(dāng)時,,
所以只要即可
又因為的變化情況如下表所示:
0 | |||
0 | |||
減函數(shù) | 極小值 | 增函數(shù) |
所以在上是減函數(shù),在上是增函數(shù),所以當(dāng)時,的最小值.
的最大值為和中的最大值.
因為,
令,因為,
所以在上是增函數(shù),
而,故當(dāng)時,,即;當(dāng)時,,即.
所以,當(dāng)時,,即,函數(shù)在上是增函數(shù),解得;當(dāng)時,,即,函數(shù)在上是減函數(shù),解得.
綜上可知,所求的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,我海監(jiān)船在島海域例行維權(quán)巡航,某時刻航行至處,此時測得其東北方向與它相距32海里的處有一外國船只,且島位于海監(jiān)船正東海里處.
(1)求此時該外國船只與島的距離;
(2)觀測中發(fā)現(xiàn),此外國船只正以每小時8海里的速度沿正南方向航行,為了將該船攔截在離島24海里處,不讓其進入島24海里內(nèi)的海域,試確定海監(jiān)船的航向,并求其速度的最小值.(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位需要從甲、乙人中選拔一人參加新崗位培訓(xùn),特別組織了個專項的考試,成績統(tǒng)計如下:
第一項 | 第二項 | 第三項 | 第四項 | 第五項 | |
甲的成績 | |||||
乙的成績 |
(1)根據(jù)有關(guān)統(tǒng)計知識,回答問題:若從甲、乙人中選出人參加新崗培訓(xùn),你認(rèn)為選誰合適,請說明理由;
(2)根據(jù)有關(guān)槪率知識,解答以下問題:
從甲、乙人的成績中各隨機抽取一個,設(shè)抽到甲的成績?yōu)?/span>,抽到乙的成績?yōu)?/span>,用表示滿足條件的事件,求事件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,其中,.
(1)求的單調(diào)區(qū)間;
(2)若存在極值點,且,其中,求證:;
(3)設(shè),函數(shù),求證:在區(qū)間上的最大值不小于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一名學(xué)生每天騎車上學(xué),從他家里到學(xué)校的途中有6個交通崗,假設(shè)在每個交通崗遇到紅燈的事件是相互獨立的,并且概率都是.
(1)假設(shè)為這名學(xué)生在途中遇到紅燈的次數(shù),求的分布列;
(2)設(shè)為這名學(xué)生在首次停車前經(jīng)過的路口數(shù),求的分布列;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,可見部分如下:
試根據(jù)圖表中的信息解答下列問題:
(1)求全班的學(xué)生人數(shù)及分?jǐn)?shù)在[70,80)之間的頻數(shù);
(2)為快速了解學(xué)生的答題情況,老師按分層抽樣的方法從位于[70,80),[80,90)和[90,100]分?jǐn)?shù)段的試卷中抽取8份進行分析,再從中任選3人進行交流,求交流的學(xué)生中,成績位于[70,80)分?jǐn)?shù)段的人數(shù)X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的普通方程;
(2)經(jīng)過點(平面直角坐標(biāo)系中點)作直線交曲線于兩點,若恰好為線段的三等分點,求直線的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com