16.已知tanα=-$\frac{2}{3}$,tan(α+β)=$\frac{1}{2}$,那么tanβ=$\frac{7}{4}$.

分析 利用兩角和與差的正切函數(shù)公式化簡tan(α+β),將tanα的值代入計算即可求出tanβ的值.

解答 解:∵tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=$\frac{1}{2}$,tanα=-$\frac{2}{3}$,
∴$\frac{(-\frac{2}{3})+tanβ}{1-(-\frac{2}{3})tanβ}$=$\frac{1}{2}$,
解得tanβ=$\frac{7}{4}$.
故答案為:$\frac{7}{4}$.

點評 此題考查了兩角和與差的正切函數(shù)公式,熟練掌握公式是解本題的關(guān)鍵,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=-x3(x>0),若f(m)-$\frac{1}{2}$m2≤f(1-m)-$\frac{1}{2}$(1-m)2,則m的取值范圍為[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{1}{3}$x3-x2-3x+1.
(1)求y=f(x)在x=1處的切線方程;
(2)求y=f(x)的極值點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)若m=-1求A∩B;
(2)若A∩B=∅,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)f(x)=lgx+x-2的零點所在的區(qū)間是( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,10)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知y=2${\;}^{co{s}^{2}\frac{1}{x}}$,則y′=2${\;}^{co{s}^{2}\frac{1}{x}}$ln2sin$\frac{2}{x}$•$\frac{1}{{x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.集合M={(x,y)|y=$\sqrt{4-{x}^{2}}$},N={(x,y)|x-y+m=0},若M∩N的子集恰有4個,則m的取值范圍是( 。
A.(-2$\sqrt{2}$,2$\sqrt{2}$)B.[-2,2$\sqrt{2}$)C.(-2$\sqrt{2}$,-2]D.[2,2$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.過點P(-2,3)且在兩坐標軸上的截距相等的直線l的方程為x+y-1=0或3x+2y=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.某公司生產(chǎn)一種產(chǎn)品,第一年投入資金1 000 萬元,出售產(chǎn)品收入 40 萬元,預計以后每年的投入資金是上一年的一半,出售產(chǎn)品所得收入比上一年多 80 萬元,同時,當預計投入的資金低于 20 萬元時,就按 20 萬元投入,且當年出售產(chǎn)品收入與上一年相等.
(Ⅰ)求第n年的預計投入資金與出售產(chǎn)品的收入;
(Ⅱ)預計從哪一年起該公司開始盈利?(注:盈利是指總收入大于總投入)

查看答案和解析>>

同步練習冊答案