8.集合M={(x,y)|y=$\sqrt{4-{x}^{2}}$},N={(x,y)|x-y+m=0},若M∩N的子集恰有4個(gè),則m的取值范圍是(  )
A.(-2$\sqrt{2}$,2$\sqrt{2}$)B.[-2,2$\sqrt{2}$)C.(-2$\sqrt{2}$,-2]D.[2,2$\sqrt{2}$)

分析 根據(jù)題意,分析可得集合M表示的圖形為半圓,集合N表示的圖形為直線,M∩N的子集恰有4個(gè),可知M∩N的元素只有2個(gè),即直線與半圓相交.利用數(shù)形結(jié)合即可得出答案.

解答 解:根據(jù)題意,對于集合M,y=$\sqrt{4-{x}^{2}}$,變形可得x2+y2=4,(y≥0),為圓的上半部分,
N={(x,y)|x-y+m=0},為直線x-y+m=0上的點(diǎn),
若M∩N的子集恰有4個(gè),即集合M∩N中有兩個(gè)元素,則直線與半圓有2個(gè)交點(diǎn),
分析可得:2≤m<2$\sqrt{2}$,
故選:D.

點(diǎn)評 本題考查直線與圓的位置關(guān)系,涉及集合子集的個(gè)數(shù),關(guān)鍵是分析集合M、N表示的幾何圖形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在△ABC中,邊a,b,c分別是角A,B,C的對邊,cosA=$\frac{4}{5}$,b=2,△ABC的面積S=3,則邊a的值為$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,四邊形ABCD是正方形,延長CD至E,使得DE=CD,若點(diǎn)P為BC的中點(diǎn),且$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AE}$,則λ+μ=( 。
A.3B.2C.1D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知tanα=-$\frac{2}{3}$,tan(α+β)=$\frac{1}{2}$,那么tanβ=$\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.作圖并求值域,單調(diào)區(qū)間:y=|x-2|-|x+2|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)在($\frac{π}{12}$,$\frac{π}{3}$)上有最大值,但沒有最小值,則ω的取值范圍是($\frac{3}{4}$,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.直線mx-y-2=0與3x-(2+m)y-1=0平行,則實(shí)數(shù)m為( 。
A.1或-3B.-1或3C.-$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)定義域?yàn)镽,命題:p:f(x)為奇函數(shù),q:${∫}_{-1}^{1}$f(x)dx=0,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知拋物線y2=2px (p>0)上的一點(diǎn)M到定點(diǎn)A($\frac{7}{2}$,4)和焦點(diǎn)F的距離之和的最小值等于5,則P=3或1.

查看答案和解析>>

同步練習(xí)冊答案