分析 (1)由頻率分布直方圖中小矩形的面積之和為1,能求出a.
(2)分層抽樣的方法在第3組中應(yīng)抽取7人,設(shè)事件“抽取3人中至少有1人年齡在第3組”為A,則$\overline{A}$為“抽取的3人中沒有1人年齡有第3組”,由此能求出抽取的3人中至少有1人的年齡在第3組的概率.
(3)X的所有可能值為0,1,2,3,依題意得X~B(3,$\frac{4}{5}$),由此能求出X的分布列和數(shù)學(xué)期望.
解答 解:(1)由頻率分布直方圖得:
(0.01+0.015+0.03+a+0.01)×10=1,
解得a=0.035.
(2)分層抽樣的方法在第3組中應(yīng)抽取$\frac{0.035}{0.01+0.015+0.035}×12$=7人,
設(shè)事件“抽取3人中至少有1人年齡在第3組”為A,
則$\overline{A}$為“抽取的3人中沒有1人年齡有第3組”,
則抽取的3人中至少有1人的年齡在第3組的概率:
P(A)=1-P($\overline{A}$)=1-$\frac{{C}_{5}^{3}}{{C}_{12}^{3}}$=$\frac{21}{22}$.
(3)X的所有可能值為0,1,2,3,依題意得X~B(3,$\frac{4}{5}$),
且P(X=k)=${C}_{3}^{k}(\frac{4}{5})^{k}(\frac{1}{5})^{3-k}$,k=0,1,2,3,
∴X的分布列為:
X | 0 | 1 | 2 | 3 |
P | $\frac{1}{125}$ | $\frac{12}{125}$ | $\frac{48}{125}$ | $\frac{64}{125}$ |
點(diǎn)評 本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意頻率分布直方圖、對立事件概率乘法公式、二項(xiàng)分布的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,0) | B. | (0,3) | C. | {0,3} | D. | {3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,+∞) | B. | $[{\frac{1}{2},1}]$ | C. | $[{\frac{2}{3},+∞})$ | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
合計(jì) | 100 |
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{6}$ | B. | $2\sqrt{2}$ | C. | $2\sqrt{3}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1) | B. | (-∞,3) | C. | (-2,1) | D. | (-1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com