11.如圖,有一塊半徑為2的半圓形鋼板,計劃剪裁成等腰梯形ABCD的形狀,它的下底AB是⊙O的直徑,上底CD的端點在圓周上.設∠BAD=α
(Ⅰ)用α表示AD和CD的長;
(Ⅱ)寫出梯形周長l關(guān)于角α的函數(shù)解析式,并求這個梯形周長的最大值.

分析 (I)過D、C分別作DE⊥AB、CF⊥AB,垂足分別為E、F,在Rt△ABD中,求出AD,在Rt△ADE中,求出AE,然后求解BC,CD即可.
(II)利用梯形ABCD的周長l=AB+BC+CD+AD,說明當點D接近于點A時,$α→\frac{π}{2}$,當點C、D接近重合時,$α→\frac{π}{4}$,得到l=-8cos2α+8cosα+8,($\frac{π}{4}<α<\frac{π}{2}$),利用二次函數(shù)的性質(zhì),轉(zhuǎn)化求解即可.

解答 (本題滿分12分)
解:(I)過D、C分別作DE⊥AB、CF⊥AB,垂足分別為E、F,…(1分)
因為′AB為半圓的直徑,AD⊥BD,又∠BAD=α
所以在Rt△ABD中,AD=AB•cosα=4cosα,…(3分)
又在Rt△ADE中,AE=AD•cosα=4cos2α,…(4分)
由等腰梯形ABCD同理可得,BC=4cosαBF=4cos2α,…(5分)
∴CD=EF=4-8cos2α;…(6分)
(II)∵梯形ABCD的周長l=AB+BC+CD+AD,
當點D接近于點A時,$α→\frac{π}{2}$,當點C、D接近重合時,$α→\frac{π}{4}$,
∴l(xiāng)=-8cos2α+8cosα+8,($\frac{π}{4}<α<\frac{π}{2}$),…(8分)
$l=-8{(cosα-\frac{1}{2})^2}+10$,…(10分)
∴當$cosα-\frac{1}{2}$,即$α=\frac{π}{3}$時,
梯形ABCD的周長l取最大值為10.…(12分)

點評 本題考查函數(shù)與方程的綜合應用,三角函數(shù)的最值,考查轉(zhuǎn)化思想以及計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖所示,在梯形ABCD中,∠B=$\frac{π}{2}$,$AB=\sqrt{2}$,BC=2,點E為AB的中點,若向量$\overrightarrow{CD}$在向量$\overrightarrow{BC}$上的投影為$-\frac{1}{2}$,則$\overrightarrow{CE}•\overrightarrow{BD}$=( 。
A.-2B.$-\frac{1}{2}$C.0D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知數(shù)列{an}滿足:a1=1,$\frac{1}{{a}_{n+1}}$=$\sqrt{\frac{1}{{{a}_{n}}^{2}}+4}$,n∈N*,其前n項和為Sn
(1)求證:①數(shù)列{$\frac{1}{{{a}_{n}}^{2}}$}是等差數(shù)列;
②對任意的正整數(shù)n,都有Sn>$\frac{\sqrt{4n+1}-1}{2}$;
(2)設數(shù)列{bn}的前n項和為Tn,且滿足:$\frac{{T}_{n+1}}{{{a}_{n}}^{2}}$=$\frac{{T}_{n}}{{{a}_{n+1}}^{2}}$+16n2-8n-3.試確定b1的值,使得數(shù)列{bn}為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.函數(shù)f (x)=2x2-mx+3,當x∈[-2,+∞]時增函數(shù),當x∈(-∞,-2]時是減函數(shù),則f (1)等于( 。
A.-3B.13
C.7D.由m而定的其它常數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.某幾何體的三視圖如圖所示,則該幾何體為( 。
A.四棱錐B.三棱錐C.三棱柱D.圓錐

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=$\sqrt{3}$sinωx+cosωx+c(ω>0,x∈R,c是實數(shù)常數(shù))的圖象上的一個最高點($\frac{π}{6}$,1),與該最高點最近的一個最低點是($\frac{2π}{3}$,-3)
(1)求函數(shù)f(x)的解析式及其單調(diào)增區(qū)間;
(2)在△ABC中,角A、B、C所對的邊分別為a,b,c,且$\overrightarrow{AB}•\overrightarrow{BC}$=-$\frac{1}{2}$ac,求函數(shù)$f(B+\frac{π}{8})$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知集合A={x||x+1|≤2,B={x|y=lg(x2-x-2)},則A∩∁RB=( 。
A.[-1,1]B.[-3,1]C.(-1,1]D.[-3,-1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知$f(x)=2sin({2x+\frac{π}{3}})$,則$f({\frac{2π}{3}})$=-$\sqrt{3}$;若f(x)=-2,則滿足條件的x的集合為$\{x|x=kπ-\frac{5}{12}π\(zhòng);,k∈Z\}$;將f(x)的圖象向右平移$\frac{π}{6}$個單位再向下平移2個單位,得到函數(shù)g(x),則g(x)的解析式為g(x)=2sin2x-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.省環(huán)保研究所對市中心每天環(huán)境放射性污染情況進行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)f(x)與時刻x(時)的關(guān)系為f(x)=|$\frac{2x}{{x}^{2}+1}$-a|+2a+$\frac{2}{3}$,x∈[0,24],其中a是與氣象有關(guān)的參數(shù),且a∈[0,1],若用每天f(x)的最大值為當天的綜合放射性污染指數(shù),并記作M(a).
(1)令t=$\frac{2x}{{x}^{2}+1}$,x∈[0,24],求t的取值范圍;
(2)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過2,試問目前市中心的綜合放射性污染指數(shù)是否超標?

查看答案和解析>>

同步練習冊答案