7.已知sinα<0且cosα>0,則α的終邊落在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用三角函數(shù)值的符號,直接判斷角所在象限即可.

解答 解:sinα<0且cosα>0,則α的終邊落在第四象限.
故選:D.

點評 本題考查三角函數(shù)值的符號,角所在象限,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)定點F1(2,0),F(xiàn)2(-2,0),平面內(nèi)一動點P滿足條件$|{P{F_1}}|+|{P{F_2}}|=4a+\frac{1}{a}(a>0)$,則點P的軌跡是( 。
A.橢圓B.雙曲線C.線段D.橢圓或線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若{an}為等差數(shù)列,Sn是其前n項和,且S11=$\frac{22π}{3}$,則tan(π+a6)的值為( 。
A.-$\sqrt{3}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.-$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知點是F雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左焦點,過左焦點F作直線與圓心為原點、半徑為實半軸長的一半的圓相切于點E,直線FE交雙曲線的右支于點P,點B是直線FE外任意一點,且2$\overrightarrow{BE}$=$\overrightarrow{BF}$+$\overrightarrow{BP}$,則雙曲線的離心率為$\frac{{\sqrt{10}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{x}^{2},x≤0}\end{array}\right.$,若f(4)=2f(a),則實數(shù)a的值為(  )
A.-1或2B.2C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.a(chǎn)1=2×(1-$\frac{1}{4}$),
a2=2×(1-$\frac{1}{4}$)(1-$\frac{1}{9}$),
a3=2×(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$),
a4=2×(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)(1-$\frac{1}{25}$),
,…,
an=2×(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)…(1-$\frac{1}{(n+1)^{2}}$),
(1)求出a1,a2,a3,a4;
(2)猜測an=2×(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)…(1-$\frac{1}{(n+1)^{2}}$)的取值并且用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某商店購進12件同品牌的衣服,其中10件是正品,其余2件是次品,從中無放回地任取2件,則取出的2件衣服中,至少有1件是次品的概率是( 。
A.$\frac{1}{3}$B.$\frac{5}{33}$C.$\frac{10}{33}$D.$\frac{7}{22}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),且對任意的x∈R,f(x+2)=$\frac{1}{f(x)}$,當(dāng)x∈[-2,0)時,f(x)=log2(x+3),則f(2017)-f(2015)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{a+lnx}{x}$的最大值為1.
(1)求實數(shù)a的值;
(2)如果函數(shù)m(x),n(x)在公共定義域D上,滿足m(x)<n(x),那么就稱n(x)為m(x)的“線上函數(shù)”,若p(x)=$\frac{2{e}^{x-1}}{(x+1)(x{e}^{x}+1)}$,q(x)=$\frac{f(x)}{e+1}$(x>1),求證:q(x)是p(x)的“線上函數(shù)”.

查看答案和解析>>

同步練習(xí)冊答案