【題目】直線將圓分成4部分,用5種不同顏色給四部分染色,每部分染一種顏色,相鄰部分不能染同一種顏色,則不同的染色方案有

A 120 B 240 C 260 D 280

【答案】C

【解析】此題考查排列組合的問題

根據(jù)題意,直線x=0y=-x將圓分成4部分,如圖所示,設(shè)這4部分別為12、3、4號區(qū)域;

對于1號區(qū)域,有5種顏色可選,即有5種涂法,

分類討論其他3個區(qū)域:24號區(qū)域涂不同的顏色,則有種涂法,3號區(qū)域有3種涂法,此時其他3個區(qū)域有12×3=36種涂法;

2、4號區(qū)域涂相同的顏色,則有4種涂法,3號區(qū)域有4種涂法,此時其他3個區(qū)域有有4×4=16種涂法;

則共有36+16=5×52=260種;

答案 C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域為R的函數(shù)f(x)對任意x∈R都有f(x)=f(4﹣x),且其導(dǎo)函數(shù)f′(x)滿足(x﹣2)f′(x)>0,則當(dāng)2<a<4時,有(
A.f(2a)<f(2)<f(log2a)
B.f(2)<f(2a)<f(log2a)
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)為下崗人員免費提供財會和計算機培訓(xùn),以提高下崗人員的再就業(yè)能力.每名下崗人員可以選擇參加一項培訓(xùn)、參加兩項培訓(xùn)或不參加培訓(xùn).已知參加過財會培訓(xùn)的有60%,參加過計算機培訓(xùn)的有75%,假設(shè)每個人對培訓(xùn)項目的選擇是相互獨立的,且各人的選擇相互之間沒有影響.

1)任選1名下崗人員,求該人參加過培訓(xùn)的概率;

2)任選3名下崗人員,記ξ3人中參加過培訓(xùn)的人數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)給出定義:

設(shè)是函數(shù)的導(dǎo)數(shù),是函數(shù)的導(dǎo)數(shù),若方程有實數(shù)解,則稱點為函數(shù)的“拐點”,

某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”:任意一個三次函數(shù)都有對稱中心,且“拐點”就是對稱中心,給定函數(shù),請根據(jù)上面探究結(jié)果:計算____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)上的點到它的兩個焦點的距離之和為4,以橢圓C的短軸為直徑的圓O經(jīng)過兩個焦點,A,B是橢圓C的長軸端點.

(1)求橢圓C的標(biāo)準(zhǔn)方程和圓O的方程;
(2)設(shè)P、Q分別是橢圓C和圓O上位于y軸兩側(cè)的動點,若直線PQ與x平行,直線AP、BP與y軸的交點即為M、N,試證明∠MQN為直角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sinωxcosωx+2 sin2ωx﹣ (ω>0)的最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移 個單位長度,再向上平移1個單位長度,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在 上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第31屆夏季奧林匹克運動會于2016年8月5日至8月21日在巴西里約熱內(nèi)盧舉行.如表是近五屆奧運會中國代表團和俄羅斯代表團獲得的金牌數(shù)的統(tǒng)計數(shù)據(jù)(單位:枚).

第30屆倫敦

第29屆北京

第28屆雅典

第27屆悉尼

第26屆亞特蘭大

中國

38

51

32

28

16

俄羅斯

24

23

27

32

26

(1)根據(jù)表格中兩組數(shù)據(jù)在答題卡上完成近五屆奧運會兩國代表團獲得的金牌數(shù)的莖葉圖,并通過莖葉圖比較兩國代表團獲得的金牌數(shù)的平均值及分散程度(不要求計算出具體數(shù)值,給出結(jié)論即可);

(2)如表是近五屆奧運會中國代表團獲得的金牌數(shù)之和(從第26屆算起,不包括之前已獲得的金牌數(shù))隨時間變化的數(shù)據(jù):

時間(屆)

26

27

28

29

30

金牌數(shù)之和(枚)

16

44

76

127

165

作出散點圖如圖:

由圖可以看出,金牌數(shù)之和與時間之間存在線性相關(guān)關(guān)系,請求出關(guān)于的線性回歸方程,并預(yù)測到第32屆奧運會時中國代表團獲得的金牌數(shù)之和為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知曲線C1, 曲線C2,以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系. 并在兩種坐標(biāo)系中取相同的單位長度。

(1)寫出曲線C1,C2的極坐標(biāo)方程;

(2)在極坐標(biāo)系中,已知點A是射線l:與C1的交點,點B是l與C2的異于極點的交點,當(dāng)在區(qū)間上變化時,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=1,AD= ,P矩形內(nèi)的一點,且AP= ,若 ,(λ,μ∈R),則λ+ μ的最大值為

查看答案和解析>>

同步練習(xí)冊答案