【題目】定義域?yàn)镽的函數(shù)f(x)對任意x∈R都有f(x)=f(4﹣x),且其導(dǎo)函數(shù)f′(x)滿足(x﹣2)f′(x)>0,則當(dāng)2<a<4時(shí),有(
A.f(2a)<f(2)<f(log2a)
B.f(2)<f(2a)<f(log2a)
C.
D.

【答案】C
【解析】解:∵函數(shù)f(x)對任意x∈R都有f(x)=f(4﹣x),∴函數(shù)f(x)對任意x都有f(2+x)=f(2﹣x),
∴函數(shù)f(x)的對稱軸為x=2
∵導(dǎo)函數(shù)f′(x)滿足(x﹣2)f′(x)>0,
∴函數(shù)f(x)在(2,+∞)上單調(diào)遞增,(﹣∞,2)上單調(diào)遞減
∵2<a<4
∴4<2a<16
∵函數(shù)f(x)的對稱軸為x=2
∴f(log2a)=f(4﹣log2a)
∵2<a<4,∴1<log2a<2
∴2<4﹣log2a<3
∴2<4﹣log2a<2a
∴f(2)<f(4﹣log2a)<f(2a),
∴f(2)<f(log2a)<f(2a),
故選C
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識,掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有6個(gè)人排成一排照相,由于甲乙性格不合,所以要求甲乙不相鄰,丙最高,要求丙站在最中間的兩個(gè)位置中的一個(gè)位置上,則不同的站法有( )種.

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把函數(shù)y=cos(2x+φ)(|φ|< )的圖象向左平移 個(gè)單位,得到函數(shù)y=f(x)的圖象關(guān)于直線x= 對稱,則φ的值為(
A.﹣
B.﹣
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,l是過定點(diǎn)P(4,2)且傾斜角為α的直線;在極坐標(biāo)系(以坐標(biāo)原點(diǎn)O為極點(diǎn),

x軸非負(fù)半軸為極軸,取相同單位長度)中,曲線C的極坐標(biāo)方程為.

(1)寫出直線l的參數(shù)方程,并將曲線C的方程化為直角坐標(biāo)方程;

(2)若曲線C與直線相交于不同的兩點(diǎn)MN,求|PM|+|PN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某程序框圖如圖所示,現(xiàn)輸入如下四個(gè)函數(shù),則可以輸出的函數(shù)是(

A.f(x)=x2
B.f(x)=
C.f(x)=ex
D.f(x)=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個(gè)小組各10名學(xué)生的英語口語測試成績?nèi)缦?/span>(單位:分).

甲組:76,90,84,86,81,87,86,82,85,83 乙組:82,84,85,89,79,80,91,89,79,74

現(xiàn)從這20名學(xué)生中隨機(jī)抽取一人,將抽出的學(xué)生為甲組學(xué)生記為事件A;“抽出學(xué)生的英語口語測試成績不低于85記為事件B,則P(AB)、P(A|B)的值分別是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體ABCDS中,面ABCD為矩形,SD⊥AD,且SD⊥AB,AD=1,AB=2,SD=

(1)求證:CD⊥平面ADS;
(2)求AD與SB所成角的余弦值;
(3)求二面角A﹣SB﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面給出的命題中:

(1)“雙曲線的方程為”是“雙曲線的漸近線為”的充分不必要條件;

(2)“”是“直線與直線互相垂直”的必要不充分條件;

(3)已知隨機(jī)變量服從正態(tài)分布,且,則;

(4)已知圓,圓,則這兩個(gè)圓有3條公切線.

其中真命題的個(gè)數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線將圓分成4部分,用5種不同顏色給四部分染色,每部分染一種顏色,相鄰部分不能染同一種顏色,則不同的染色方案有

A 120 B 240 C 260 D 280

查看答案和解析>>

同步練習(xí)冊答案