【題目】如圖,多面體ABCDS中,面ABCD為矩形,SD⊥AD,且SD⊥AB,AD=1,AB=2,SD=

(1)求證:CD⊥平面ADS;
(2)求AD與SB所成角的余弦值;
(3)求二面角A﹣SB﹣D的余弦值.

【答案】
(1)證明:∵ABCD是矩形,∴CD⊥AD

又SD⊥AB,AB∥CD,則CD⊥SD

AD⊥SD

∴CD⊥平面ADS


(2)解:矩形ABCD,∴AD∥BC,即BC=1,

∴要求AD與SB所成的角,即求BC與SB所成的角

在△SBC中,由(1)知,SD⊥面ABCD.

∴Rt△SDC中,

∴CD是CS在面ABCD內(nèi)的射影,且BC⊥CD,

∴SC⊥BC

tan∠SBC=

cos∠SBC=

從而SB與AD的成的角的余弦為


(3)∵△SAD中SD⊥AD,且SD⊥AB

∴SD⊥面ABCD.

∴平面SDB⊥平面ABCD,BD為面SDB與面ABCD的交線.

∴過A作AE⊥DB于E∴AE⊥平面SDB

又過A作AF⊥SB于F,連接EF,

從而得:EF⊥SB

∴∠AFB為二面角A﹣SB﹣D的平面角

在矩形ABCD中,對(duì)角線∵

BD= ∴在△ABD中,AE=

由(2)知在Rt△SBC,

而Rt△SAD中,SA=2,且AB=2,∴SB2=SA2+AB2,

∴△SAB為等腰直角三角形且∠SAB為直角,

所以所求的二面角的余弦為


【解析】(1)要證CD⊥平面ADS,只需證明直線CD垂直平面ADS內(nèi)的兩條相交直線AD、SD即可;(2)要求AD與SB所成的角,即求BC與SB所成的角,解三角形可求AD與SB所成角的余弦值;(3)過A作AE⊥DB于E 又過A作AF⊥SB于F,連接EF,說明∠AFB為二面角A﹣SB﹣D的平面角,解三角形可求二面角A﹣SB﹣D的余弦值.
【考點(diǎn)精析】掌握異面直線及其所成的角和直線與平面垂直的判定是解答本題的根本,需要知道異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系;一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解高中生作文成績與課外閱讀量之間的關(guān)系,某研究機(jī)構(gòu)隨機(jī)抽取了60名高中生,通過問卷調(diào)查,得到以下數(shù)據(jù):

0.050

0.025

0.010

0.005

0.001

k

3.841

5.024

6.635

7.879

10.828

由以上數(shù)據(jù),計(jì)算得到K2的觀測值k≈9.643,根據(jù)臨界值表,以下說法正確的是(  )

A. 沒有充足的理由認(rèn)為課外閱讀量大與作文成績優(yōu)秀有關(guān)

B. 0.5%的把握認(rèn)為課外閱讀量大與作文成績優(yōu)秀有關(guān)

C. 99.9%的把握認(rèn)為課外閱讀量大與作文成績優(yōu)秀有關(guān)

D. 99.5%的把握認(rèn)為課外閱讀量大與作文成績優(yōu)秀有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=x2+alnx

1)若a=﹣1,求函數(shù)fx)的極值,并指出極大值還是極小值;

2)若a=1,求函數(shù)fx)在[1,e]上的最值;

3)若a=1,求證:在區(qū)間[1,+∞)上,函數(shù)fx)的圖象在gx=x3的圖象下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域?yàn)镽的函數(shù)f(x)對(duì)任意x∈R都有f(x)=f(4﹣x),且其導(dǎo)函數(shù)f′(x)滿足(x﹣2)f′(x)>0,則當(dāng)2<a<4時(shí),有(
A.f(2a)<f(2)<f(log2a)
B.f(2)<f(2a)<f(log2a)
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】n是一個(gè)三位正整數(shù),且n的個(gè)位數(shù)字大于十位數(shù)字,十位數(shù)字大于百位數(shù)字,則稱n三位遞增數(shù)”(137,359,567).

在某次數(shù)學(xué)趣味活動(dòng)中,每位參加者需從所有的三位遞增數(shù)中隨機(jī)抽取1個(gè)數(shù),且只能抽取一次.得分規(guī)則如下:若抽取的三位遞增數(shù)的三個(gè)數(shù)字之積不能被5整除,參加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.

(1)寫出所有個(gè)位數(shù)字是5三位遞增數(shù)”;

(2)若甲參加活動(dòng),求甲得分X的分布列和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方向向量為v=(1, )的直線l過點(diǎn)(0,﹣2 )和橢圓C: =1(a>b>0)的焦點(diǎn),且橢圓C的中心關(guān)于直線l的對(duì)稱點(diǎn)在橢圓C的右準(zhǔn)線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在過點(diǎn)E(﹣2,0)的直線m交橢圓C于點(diǎn)M、N,滿足 = .cot∠MON≠0(O為原點(diǎn)).若存在,求直線m的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x,y滿足約束條件 ,目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值M,若M的取值范圍是[1,2],則點(diǎn)M(a,b)所經(jīng)過的區(qū)域面積=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)為下崗人員免費(fèi)提供財(cái)會(huì)和計(jì)算機(jī)培訓(xùn),以提高下崗人員的再就業(yè)能力.每名下崗人員可以選擇參加一項(xiàng)培訓(xùn)、參加兩項(xiàng)培訓(xùn)或不參加培訓(xùn).已知參加過財(cái)會(huì)培訓(xùn)的有60%,參加過計(jì)算機(jī)培訓(xùn)的有75%,假設(shè)每個(gè)人對(duì)培訓(xùn)項(xiàng)目的選擇是相互獨(dú)立的,且各人的選擇相互之間沒有影響.

1)任選1名下崗人員,求該人參加過培訓(xùn)的概率;

2)任選3名下崗人員,記ξ3人中參加過培訓(xùn)的人數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第31屆夏季奧林匹克運(yùn)動(dòng)會(huì)于2016年8月5日至8月21日在巴西里約熱內(nèi)盧舉行.如表是近五屆奧運(yùn)會(huì)中國代表團(tuán)和俄羅斯代表團(tuán)獲得的金牌數(shù)的統(tǒng)計(jì)數(shù)據(jù)(單位:枚).

第30屆倫敦

第29屆北京

第28屆雅典

第27屆悉尼

第26屆亞特蘭大

中國

38

51

32

28

16

俄羅斯

24

23

27

32

26

(1)根據(jù)表格中兩組數(shù)據(jù)在答題卡上完成近五屆奧運(yùn)會(huì)兩國代表團(tuán)獲得的金牌數(shù)的莖葉圖,并通過莖葉圖比較兩國代表團(tuán)獲得的金牌數(shù)的平均值及分散程度(不要求計(jì)算出具體數(shù)值,給出結(jié)論即可);

(2)如表是近五屆奧運(yùn)會(huì)中國代表團(tuán)獲得的金牌數(shù)之和(從第26屆算起,不包括之前已獲得的金牌數(shù))隨時(shí)間變化的數(shù)據(jù):

時(shí)間(屆)

26

27

28

29

30

金牌數(shù)之和(枚)

16

44

76

127

165

作出散點(diǎn)圖如圖:

由圖可以看出,金牌數(shù)之和與時(shí)間之間存在線性相關(guān)關(guān)系,請(qǐng)求出關(guān)于的線性回歸方程,并預(yù)測到第32屆奧運(yùn)會(huì)時(shí)中國代表團(tuán)獲得的金牌數(shù)之和為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案