6.已知動圓M過定點P(1,0),且與直線x=-1相切.
(1)求動圓圓心M的軌跡C的方程;
(2)設(shè)A、B是軌跡C上異于原點O的兩點,且$\overrightarrow{OA}•\overrightarrow{OB}$=0,求證:直線AB過定點.

分析 (1)設(shè)M(x,y)求出PM和M到切線x=-1的距離,列出方程整理化簡即可得出軌跡方程;
(2)設(shè)直線AB的方程為x=ty+m,聯(lián)立方程組消元,設(shè)A(x1,y1),B(x2,y2),利用根與系數(shù)的關(guān)系計算x1x2,y1y2,令x1x2+y1y2=0即可得出m,得出AB的定點坐標(biāo).

解答 解:(1)設(shè)M(x,y),
M到直線x=-1的距離為|x+1|,又|PM|=$\sqrt{(x-1)^{2}+{y}^{2}}$,
∴|x+1|=$\sqrt{(x-1)^{2}+{y}^{2}}$,兩邊平方得x2+2x+1=x2-2x+1+y2
∴y2=4x.
∴動圓圓心M的軌跡C的方程為y2=4x.
(2)設(shè)直線AB為:x=ty+m,
聯(lián)立方程組$\left\{\begin{array}{l}{x=ty+m}\\{{y}^{2}=4x}\end{array}\right.$,消元得y2-4ty-4m=0,
設(shè)A(x1,y1),B(x2,y2),∴y1+y2=4t,y1y2=-4m.
∴x1x2=(ty1+m)(ty2+m)=t2y1y2+mt(y1+y2)+m2
∴$\overrightarrow{OA}•\overrightarrow{OB}$=x1x2+y1y2=-4mt2+4mt2+m2-4m=m2-4m=0,
解得m=4或m=0(舍).
∴直線AB恒過定點(4,0).

點評 本題考查了軌跡方程的求解,直線與圓的位置關(guān)系,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.用斜二測畫法得到某平面圖形M的直觀圖是邊長為1的正方形,則平面圖形M的面積為( 。
A.2$\sqrt{2}$B.$\sqrt{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若兩圓x2+y2=1和(x+4)2+(y-a)2=25有三條公切線,則常數(shù)a=±2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)函數(shù)f(x)=(1-2x)10,則導(dǎo)函數(shù)f′(x)的展開式x2項的系數(shù)為-2880.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,短軸的一個端點為M(0,1),過橢圓左頂點A的直線l與橢圓的另一交點為B.
(1)求橢圓的方程;
(2)若l與直線x=a交于點P,求$\overrightarrow{OB}$•$\overrightarrow{PO}$的值;
(3)若|AB|=$\frac{4}{3}$,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)f(x)=$\left\{\begin{array}{l}x-1,x≤1\\{x^2}-4x+3,x>1\end{array}\right.$,則g(x)=f(x)-lnx的零點個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.$\overline{z}$為復(fù)數(shù)z的共軛復(fù)數(shù),i為虛數(shù)單位,且i•$\overline{z}$=1-i,則復(fù)數(shù)z的虛部為( 。
A.-iB.-1C.iD.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.要使函數(shù)y=x+$\frac{k}{x}$在x∈[2,+∞)上有最小值2+$\frac{k}{2}$,則k的取值范圍是(-∞,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知△ABC的三條邊分別為a,b,c.用分析法證明:$\frac{\sqrt{ab}}{1+\sqrt{ab}}$<$\frac{a+b}{1+a+b}$.

查看答案和解析>>

同步練習(xí)冊答案