【題目】設(shè)數(shù)列的所有項都是不等于的正數(shù),的前項和為,已知點在直線上(其中常數(shù),且)數(shù)列,又.

1)求證數(shù)列是等比數(shù)列;

2)如果,求實數(shù)的值;

3)若果存在使得點都在直線在上,是否存在自然數(shù),當(dāng))時,恒成立?若存在,求出的最小值;若不存在,請說明理由.

【答案】(1)證明見解析(2),(3)存在自然數(shù),其最小值為

【解析】

1)由題意把點,代入直線,整理后得到,由此說明數(shù)列是等比數(shù)列;

2)把化為指數(shù)式,結(jié)合數(shù)列是等比數(shù)列可求值,再由在直線上,取求得值;

3)由,知恒成立等價于恒成立.結(jié)合存在,使得點都在直線在上,推得是首項為正,公差為的等差數(shù)列.再由一定存在自然數(shù),使求解自然數(shù)的最小值.

1)證明:,都在直線上,

,

,又,且,

為非零常數(shù),即數(shù)列是等比數(shù)列;

2)解:由,得,即,得

在直線上,得,

得,;

3)解:由,知恒成立等價于恒成立.

存在,,使得點都在直線在上,

,即,

,可得,

,

是首項為正,公差為的等差數(shù)列.

一定存在自然數(shù),使,

,解得,

存在自然數(shù),其最小值為,使得當(dāng)時,恒成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P-ABCD中,底面ABCD為直角梯形,平面ABCD,且.

1)求證:平面PBD

(2)若PB與平面ABCD所成的角為,求二面角D-PC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人上午7時乘船出發(fā),以勻速海里/小時港前往相距50海里的港,然后乘汽車以勻速千米/小時()自港前往相距千米的市,計劃當(dāng)天下午4到9時到達(dá)市.設(shè)乘船和汽車的所要的時間分別為、小時,如果所需要的經(jīng)費 (單位:元)

(1)試用含有的代數(shù)式表示;

(2)要使得所需經(jīng)費最少,求的值,并求出此時的費用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐S-ABCD的底面為正方形,,ACBD交于E,M,N分別為SD,SA的中點,.

1)求證:平面平面SBD

2)求直線BD與平面CMN所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年,國家逐步推行全新的高考制度.新高考不再分文理科,某省采用模式,其中語文、數(shù)學(xué)、外語三科為必考科目,每門科目滿分均為.另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物門科目中自選門參加考試(),每門科目滿分均為.為了應(yīng)對新高考,某高中從高一年級名學(xué)生(其中男生人,女生人)中,采用分層抽樣的方法從中抽取名學(xué)生進(jìn)行調(diào)查,其中,女生抽取.

1)求的值;

2)學(xué)校計劃在高一上學(xué)期開設(shè)選修中的物理地理兩個科目,為了了解學(xué)生對這兩個科目的選課情況,對抽取到的名學(xué)生進(jìn)行問卷調(diào)查(假定每名學(xué)生在物理地理這兩個科目中必須選擇一個科目且只能選擇一個科目),下表是根據(jù)調(diào)查結(jié)果得到的一個不完整的列聯(lián)表,請將下面的列聯(lián)表補充完整,并判斷是否有的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由;

選擇物理

選擇地理

總計

男生

女生

總計

3)在抽取到的名女生中,按(2)中的選課情況進(jìn)行分層抽樣,從中抽出名女生,再從這名女生中抽取人,設(shè)這人中選擇物理的人數(shù)為,求的分布列及期望.附:

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市2013年發(fā)放汽車牌照12萬張,其中燃油型汽車牌照10萬張,電動型汽車2萬張,為了節(jié)能減排和控制總量,從2013年開始,每年電動型汽車牌照按50%增長,而燃油型汽車牌照每一年比上一年減少05萬張,同時規(guī)定一旦某年發(fā)放的牌照超過15萬張,以后每一年發(fā)放的電動車的牌照的數(shù)量維持在這一年的水平不變.

1)記2013年為第一年,每年發(fā)放的燃油型汽車牌照數(shù)量構(gòu)成數(shù)列,每年發(fā)放電動型汽車牌照數(shù)為構(gòu)成數(shù)列,完成下列表格,并寫出這兩個數(shù)列的通項公式;

2)從2013年算起,累計各年發(fā)放的牌照數(shù),哪一年開始超過200萬張?











查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,曲線由兩個橢圓和橢圓組成,當(dāng)成等比數(shù)列時,稱曲線貓眼曲線”.

1)若貓眼曲線過點,且的公比為,求貓眼曲線的方程;

2)對于題(1)中的求貓眼曲線,任作斜率為且不過原點的直線與該曲線相交,交橢圓所得弦的中點為M,交橢圓所得弦的中點為N,求證:為與無關(guān)的定值;

3)若斜率為的直線為橢圓的切線,且交橢圓于點為橢圓上的任意一點(點與點不重合),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)單調(diào)函數(shù)的定義域為,值域為,如果單調(diào)函數(shù)使得函數(shù)的值域也是,則稱函數(shù)是函數(shù)的一個保值域函數(shù).已知定義域為的函數(shù),函數(shù)互為反函數(shù),且的一個保值域函數(shù)”,的一個保值域函數(shù),則__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的上界.

1)設(shè),判斷上是否為有界函數(shù),若是,請說明理由,并寫出的所有上界的集合;若不是,也請說明理由;

2)若函數(shù)上是以為上界的有界函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案