【題目】某市2013年發(fā)放汽車牌照12萬張,其中燃油型汽車牌照10萬張,電動型汽車2萬張,為了節(jié)能減排和控制總量,從2013年開始,每年電動型汽車牌照按50%增長,而燃油型汽車牌照每一年比上一年減少0.5萬張,同時規(guī)定一旦某年發(fā)放的牌照超過15萬張,以后每一年發(fā)放的電動車的牌照的數(shù)量維持在這一年的水平不變.
(1)記2013年為第一年,每年發(fā)放的燃油型汽車牌照數(shù)量構(gòu)成數(shù)列,每年發(fā)放電動型汽車牌照數(shù)為構(gòu)成數(shù)列,完成下列表格,并寫出這兩個數(shù)列的通項(xiàng)公式;
(2)從2013年算起,累計各年發(fā)放的牌照數(shù),哪一年開始超過200萬張?
. |
【答案】(1)見解析,,;(2)年累計發(fā)放汽車牌照超過萬張.
【解析】
(1)利用年開始,每年電動型汽車牌照按增長,而燃油型汽車牌照按每一年比上一年減少萬張,同時規(guī)定一旦某年發(fā)放牌照超過萬張,以后每一年發(fā)放的電動型車的牌照的數(shù)量維持在這一年水平不變,即可填寫表格,并寫出這兩個數(shù)列的通項(xiàng)公式;(2)利用等差數(shù)列與等比數(shù)列的求和公式,可得,即可得出結(jié)論.
(1)
9 | ||||
當(dāng)且,;
當(dāng)且,,
,
而,∴;
(2)當(dāng)時,,
當(dāng)時,
由得,即,得,
到2029年累計發(fā)放汽車牌照超過200萬張.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】美國一貫推行強(qiáng)權(quán)政治,2018年3月22日,美國總統(tǒng)特朗普在白宮簽署了對中國輸美產(chǎn)品征收關(guān)稅的總統(tǒng)備忘錄,限制中國商品進(jìn)入美國市場。中國某企業(yè)計劃打入美國市場,決定從A、B兩種產(chǎn)品中只選一種進(jìn)行投資生產(chǎn),已知投入生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:(單位:萬元)
年固定成本 | 每件產(chǎn)品成本 | 每件產(chǎn)品銷售價 | 每年最多可生產(chǎn)件數(shù) | |
A產(chǎn)品 | 40 | m | 15 | 200 |
B產(chǎn)品 | 60 | 10 | 22 | 150 |
其中固定成本與年生產(chǎn)的件數(shù)無關(guān),m是待定的常數(shù),其值由生產(chǎn)A產(chǎn)品的原材料決定,預(yù)計,另外,年銷售件B產(chǎn)品時需交0.05萬元的附件關(guān)稅,假設(shè)生產(chǎn)出來的產(chǎn)品都能在當(dāng)年銷售出去.
(1)求該廠分別投資生產(chǎn)A、B兩種產(chǎn)品的年利潤與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)之間的函數(shù)關(guān)系,并求出其定義域;
(2)如何投資才可獲得最大年利潤?請?jiān)O(shè)計出投資方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,
(1)當(dāng)時,求的最大值和最小值;
(2)求實(shí)數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】獨(dú)立性檢驗(yàn)中,假設(shè):運(yùn)動員受傷與不做熱身運(yùn)動沒有關(guān)系.在上述假設(shè)成立的情況下,計算得的觀測值.下列結(jié)論正確的是
A. 在犯錯誤的概率不超過0.01的前提下,認(rèn)為運(yùn)動員受傷與不做熱身運(yùn)動有關(guān)
B. 在犯錯誤的概率不超過0.01的前提下,認(rèn)為運(yùn)動員受傷與不做熱身運(yùn)動無關(guān)
C. 在犯錯誤的概率不超過0.005的前提下,認(rèn)為運(yùn)動員受傷與不做熱身運(yùn)動有關(guān)
D. 在犯錯誤的概率不超過0.005的前提下,認(rèn)為運(yùn)動員受傷與不做熱身運(yùn)動無關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將4名志愿者分別安排到火車站、輪渡碼頭、機(jī)場工作,要求每一個地方至少安排一名志愿者,其中甲、乙兩名志愿者不安排在同一個地方工作,則不同的安排方法共有
A. 24種B. 30種C. 32種D. 36種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)在圓上,直線上圓在點(diǎn)處的切線,過點(diǎn)作圓的切線與交于點(diǎn).
(Ⅰ)證明為定值,并求動點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)過點(diǎn)的直線與曲線分別交于和,且,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查某野生動物保護(hù)區(qū)內(nèi)某種野生動物的數(shù)量,調(diào)查人員某天逮到這種動物1200只作好標(biāo)記后放回,經(jīng)過一星期后,又逮到這種動物1000只,其中作過標(biāo)記的有100只,按概率的方法估算,保護(hù)區(qū)內(nèi)有多少只該種動物.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且,記.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(且)在區(qū)間上的最大值與最小值之和為,,其中.
(1)直接寫出的解析式和單調(diào)性;
(2)若對恒成立,求實(shí)數(shù)的取值范圍;
(3)設(shè),若,使得對,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com