【題目】將4名志愿者分別安排到火車站、輪渡碼頭、機(jī)場工作,要求每一個地方至少安排一名志愿者,其中甲、乙兩名志愿者不安排在同一個地方工作,則不同的安排方法共有

A. 24種B. 30種C. 32種D. 36種

【答案】B

【解析】

利用間接法,即首先安排人到三個地方工作的安排方法數(shù),再求出當(dāng)甲、乙兩名志愿者安排在同一個地方時的安排方法數(shù),于是得出答案。

先考慮安排人到三個地方工作,先將人分為三組,分組有種,再將這三組安排到三個地方工作,則安排人到三個地方工作的安排方法數(shù)為種,

當(dāng)甲、乙兩名志愿者安排在同一個地方時,則只有一個分組情況,此時,甲、乙兩名志愿者安排在同一個地方工作的安排方法數(shù)為,

因此,所求的不同安排方法數(shù)為種,故選:B。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時,求函數(shù)的單調(diào)性;

(2)當(dāng)時,若函數(shù)的極值為e,求的值;

(3)當(dāng)時,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,已知曲線的參數(shù)方程為 為參數(shù)以原點(diǎn)為極點(diǎn)x軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為:,直線的極坐標(biāo)方程為

Ⅰ)寫出曲線的極坐標(biāo)方程,并指出它是何種曲線;

Ⅱ)設(shè)與曲線交于兩點(diǎn),與曲線交于兩點(diǎn),求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)上是增函數(shù),且在定義域上是偶函數(shù).

1)求p的值,并寫出相應(yīng)的函數(shù)的解析式.

2)對于(1)中求得的函數(shù),設(shè)函數(shù),問是否存在實(shí)數(shù),使得在區(qū)間上是減函數(shù),且在區(qū)間上是增函數(shù)?若存在,請求出q;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時,求函數(shù)的零點(diǎn)個數(shù);

(2)若,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市2013年發(fā)放汽車牌照12萬張,其中燃油型汽車牌照10萬張,電動型汽車2萬張,為了節(jié)能減排和控制總量,從2013年開始,每年電動型汽車牌照按50%增長,而燃油型汽車牌照每一年比上一年減少05萬張,同時規(guī)定一旦某年發(fā)放的牌照超過15萬張,以后每一年發(fā)放的電動車的牌照的數(shù)量維持在這一年的水平不變.

1)記2013年為第一年,每年發(fā)放的燃油型汽車牌照數(shù)量構(gòu)成數(shù)列,每年發(fā)放電動型汽車牌照數(shù)為構(gòu)成數(shù)列,完成下列表格,并寫出這兩個數(shù)列的通項公式;

2)從2013年算起,累計各年發(fā)放的牌照數(shù),哪一年開始超過200萬張?











查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著小汽車的普及,“駕駛證”已經(jīng)成為現(xiàn)代人“必考”證件之一.若某人報名參加了駕駛證考試,要順利地拿到駕駛證,需要通過四個科目的考試,其中科目二為場地考試在每一次報名中,每個學(xué)員有次參加科目二考試的機(jī)會(這次考試機(jī)會中任何一次通過考試,就算順利通過,即進(jìn)入下一科目考試,或次都沒有通過,則需要重新報名),其中前次參加科目二考試免費(fèi),若前次都沒有通過,則以后每次參加科目二考試都需要交元的補(bǔ)考費(fèi).某駕校通過幾年的資料統(tǒng)計,得到如下結(jié)論:男性學(xué)員參加科目二考試,每次通過的概率均為,女性學(xué)員參加科目二考試,每次通過的概率均為.現(xiàn)有一對夫妻同時報名參加駕駛證考試,在本次報名中,若這對夫妻參加科目二考試的原則為:通過科目二考試或者用完所有機(jī)會為止.

1)求這對夫妻在本次報名中參加科目二考試都不需要交補(bǔ)考費(fèi)的概率;

2)求這對夫妻在本次報名中參加科目二考試產(chǎn)生的補(bǔ)考費(fèi)用之和為元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)已知拋物線和圓的公共弦過拋物線的焦點(diǎn),且弦長為4.

(1)求拋物線和圓的方程;

(2)過點(diǎn)的直線與拋物線相交于兩點(diǎn)拋物線在點(diǎn)處的切線與軸的交點(diǎn)為,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1,AA1ABAC2,ABAC,M是棱BC的中點(diǎn)點(diǎn)P在線段A1B

(1)若P是線段A1B的中點(diǎn),求直線MP與直線AC所成角的大。

(2)若的中點(diǎn),直線與平面所成角的正弦值為,求線段BP的長度.

查看答案和解析>>

同步練習(xí)冊答案