4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為e=$\frac{1}{2}$,P為橢圓C上一個動點,△PF1F2面積的最大值為$\sqrt{3}$,拋物線E:y2=2px(p>0)與橢圓C有共同的焦點.
(1)求橢圓C和拋物線E的方程;
(2)設(shè)A,B是拋物線E上分別位于x軸兩側(cè)的兩個動點,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=5.
①求證:直線AB必過定點,并求出定點M的坐標(biāo);
②過點M作AB的垂線與拋物線交于G、H兩點,求四邊形AGBH面積的最小值.

分析 (1)當(dāng)P為橢圓的上下頂點時,△PF1F2面積的最大值,利用面積公式、離心率公式及a2=b2+c2,聯(lián)立解出即可得出a、b和c的值,求得橢圓方程,由$\frac{p}{2}$=c,求得p的值,即可求得拋物線方程;
(2)設(shè)出直線方程和A、B點坐標(biāo),并將直線方程代入橢圓方程,整理得到關(guān)于y的一元二次方程,利用韋達(dá)定理求得y1+y2和y1•y1關(guān)系,$\overrightarrow{OA}$•$\overrightarrow{OB}$=5,求得t=5,即可證明直線AB必過定點(5,0),設(shè)G、H的坐標(biāo),分別表示出丨AB丨和丨GH丨,根據(jù)四邊形AGBH面積S=$\frac{1}{2}$丨AB丨•丨GH丨,整理關(guān)于x的函數(shù),利用函數(shù)單調(diào)性求得S的最小值.

解答 解:(1)設(shè)F1(-c,0),F(xiàn)2(c,0),由題意得:
$\left\{\begin{array}{l}{\frac{c}{a}=\frac{1}{2}}\\{\frac{1}{2}(2c)×b=\sqrt{3}}\end{array}\right.$,解得:a=2,b=$\sqrt{3}$,c=1,
所以橢圓C的方程為:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.(2分)
所以$\frac{p}{2}=1$,得:p=2.
拋物線E的方程為y2=4x.(3分)
(2)①證明:設(shè)直線AB的方程為x=my+t,A($\frac{{y}_{1}^{2}}{4}$,y1),B($\frac{{y}_{2}^{2}}{4}$,y2),y1•y1<0,
聯(lián)立$\left\{\begin{array}{l}{{y}^{2}=4x}\\{x=my+t}\end{array}\right.$得:y2-4my-4t=0,
由韋達(dá)定理可知y1+y2=4m,y1•y1=-4t.(5分)
由$\overrightarrow{OA}$•$\overrightarrow{OB}$=5.,得$\frac{({y}_{1}{y}_{2})^{2}}{16}+{y}_{1}{y}_{2}=-5$,
整理得t2-4t-5=0,解得t=-1或5,
∵y1•y1<0,
∴t=5,
∴直線AB過定點M的坐標(biāo)為(5,0).(7分)
②由①得丨AB丨=$\sqrt{1+{m}^{2}}$,丨y1-y1丨=$\sqrt{1+{m}^{2}}$•$\sqrt{16{m}^{2}+80}$=4$\sqrt{1+{m}^{2}}$•$\sqrt{{m}^{2}+5}$.(9分)
設(shè)G(x3,y3)、H(x4,y4),同理得:丨GH丨=$\sqrt{1+(-\frac{1}{m})^{2}}$丨y3-y4丨=4$\sqrt{1+\frac{1}{{m}^{2}}}$•$\sqrt{\frac{1}{{m}^{2}}+5}$.(10分)
則四邊形AGBH的面積S=$\frac{1}{2}$丨AB丨•丨GH丨=8$\sqrt{1+{m}^{2}}$•$\sqrt{{m}^{2}+5}$•$\sqrt{1+\frac{1}{{m}^{2}}}$•$\sqrt{\frac{1}{{m}^{2}}+5}$. 
=8$\sqrt{[2+({m}^{2}+\frac{1}{{m}^{2}})]•[26+5({m}^{2}+\frac{1}{{m}^{2}})]}$,(11分)
令${m}^{2}+\frac{1}{{m}^{2}}$=μ(μ≥2),
則S=8$\sqrt{(2+μ)(26+5μ)}$=8$\sqrt{5{μ}^{2}+36μ+52}$,
∴S關(guān)于μ的增函數(shù).故Smin=96,當(dāng)且僅當(dāng)m=±1時取得最小值96.(12分)

點評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、一元二次方程的根與系數(shù)的關(guān)系、四邊形形面積計算公式、向量數(shù)量積運算性質(zhì),考查了推理能力與計算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a,b>0)上存在一點P,與坐標(biāo)原點O,右焦點F2構(gòu)成正三角形,則雙曲線的離心率為( 。
A.$\frac{{\sqrt{5}+1}}{2}$B.$\sqrt{3}$C.$\sqrt{3}$+1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在北京召開的國際數(shù)學(xué)家大會會標(biāo)如圖所示,它是由4個相同的直角三角形與中間的小正方形拼成的一大正方形,若直角三角形中較小的銳角為θ,大正方形的面積是1,小正方形的面積是$\frac{1}{25}$,則cos2θ-sinθ2+2=( 。
A.$\frac{57}{25}$B.$\frac{24}{25}$C.-$\frac{57}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列說法錯誤的是( 。
A.在△ABC中,a>b是sinA>sinB的充要條件
B.命題:“在銳角△ABC中,sinA>cosB”為真命題
C.若p:?x≥0,x2-x+1>0,則¬p:?x<0,x2-x+1≤0
D.已知命題p:?φ∈R,使f(x)=sin(x+φ)為偶函數(shù);命題q:?x∈R,cos2x+4sinx-3<0,則“p∧(¬q)”為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在平面直角坐標(biāo)系xOy中,已知直線l:x+y+a=0,與點A(0,2),若直線l上存在點M滿足|$\overrightarrow{MA}$|2+|$\overrightarrow{MO}$|2=7(O為原點),則實數(shù)a的取值范圍是( 。
A.(-$\sqrt{5}$-1,$\sqrt{5}$-1)B.[-$\sqrt{5}$-1,$\sqrt{5}$-1]C.(-2$\sqrt{2}$-1,2$\sqrt{2}$-1)D.[-2$\sqrt{2}$-1,2$\sqrt{2}$-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若橢圓的對稱軸為坐標(biāo)軸,且長軸長為10,有一個焦點坐標(biāo)是(3,0),則此橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{{1-{a^2}}}$=1(a>0)的左右焦點分別為F1,F(xiàn)2,若存在k,使直線y=k(x-1)與雙曲線的右支交于P,Q兩點,且△PF1Q的周長為8,則雙曲線的斜率為正的漸近線的傾斜角的取值范圍是( 。
A.($\frac{π}{3}$,$\frac{π}{2}$)B.($\frac{π}{6}$,$\frac{π}{2}$)C.(0,$\frac{π}{6}$)D.(0,$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,四棱錐P-ABCD的底面ABCD是菱形,側(cè)棱PD⊥底面ABCD,∠BCD=60°.
(I)若點F,E分別在線段AP,BC上,AF=2FP,BE=2EC.求證:EF∥平面PDC;
(Ⅱ)問在線段AB上,是否存在點Q,使得平面PAB⊥平面PDQ,若存在,求出點Q的位置;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在等比數(shù)列{an}中,若a3,a7是方程x2-5x+2=0的兩根,則a5的值是( 。
A.$\sqrt{2}$B.±$\sqrt{2}$C.-$\sqrt{2}$D.±2

查看答案和解析>>

同步練習(xí)冊答案