Processing math: 100%
15.在北京召開的國際數(shù)學(xué)家大會會標(biāo)如圖所示,它是由4個相同的直角三角形與中間的小正方形拼成的一大正方形,若直角三角形中較小的銳角為θ,大正方形的面積是1,小正方形的面積是125,則cos2θ-sinθ2+2=(  )
A.5725B.2425C.-5725D.-2425

分析 根據(jù)題意可知每個直角三角形的長直角邊為cosθ,短直角邊為sinθ,小正方形的邊長為cosθ-sinθ,先利用小正方形的面積求得∴(cosθ-sinθ)2的值,根據(jù)θ為直角三角形中較小的銳角,判斷出cosθ>sinθ,求得cosθ-sinθ的值,進(jìn)而求得2cosθsinθ利用配方法求得(cosθ+sinθ)2的進(jìn)而求得cosθ+sinθ,利用平方差公式把sin2θ-cos2θ展開后,把cosθ+sinθ和cosθ-sinθ的值代入即可求得答案.

解答 解:依題意可知拼圖中的每個直角三角形的長直角邊為cosθ,短直角邊為sinθ,小正方形的邊長為cosθ-sinθ,
∵小正方形的面積是125,
∴(cosθ-sinθ)2=125,
又θ為直角三角形中較小的銳角,
∴cosθ>sinθ,
∴cosθ-sinθ=15,
又∵(cosθ-sinθ)2=1-2sinθcosθ=125
∴2cosθsinθ=2425,
∴1+2sinθcosθ=4925
即(cosθ+sinθ)2=4925,
∴cosθ+sinθ=75,
∴sin2θ-cos2θ=(cosθ+sinθ)(sinθ-cosθ)=-725
∴cos2θ-sin2θ+2=2+725=5725
故選:A.

點評 本題主要考查了三角函數(shù)的化簡求值,同角三角函數(shù)的基本關(guān)系.考查了學(xué)生綜合分析推理和基本的運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.曲線C:f(x)=x3-2x2-x+1,點P(1,0),求過點P的切線l與C圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,三棱錐A-BCD中,E是AC中點,F(xiàn)在AD上,且2AF=FD,若三棱錐A-BEF的體積是2,則四棱錐B-ECDF的體積為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在平面直角坐標(biāo)系中,已知雙曲線的中心在原點,焦點在x軸上,實軸長為8,離心率為54,則它的漸近線的方程為( �。�
A.y=±43xB.y=±32xC.y=±916xD.y=±34x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,已知四邊形ABCD,ADEF均為平行四邊形,DE=BC=2,BD⊥CD,DE⊥平面ABCD.
(Ⅰ)求證:平面FAB⊥平面ABCD;
(Ⅱ)求四棱錐F-ABCD的體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列說法中正確的是(  )
A.共線向量的夾角為0°或180°
B.長度相等的向量叫做相等向量
C.共線向量就是向量所在的直線在同一直線上
D.零向量沒有方向

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知AB=a,BC=\overrightarrow,CD=c,DE=\overrightarrowcik4scc,AE=e,則a++c+\overrightarrowo2ooao2-e=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:x2a2+y22=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為e=12,P為橢圓C上一個動點,△PF1F2面積的最大值為3,拋物線E:y2=2px(p>0)與橢圓C有共同的焦點.
(1)求橢圓C和拋物線E的方程;
(2)設(shè)A,B是拋物線E上分別位于x軸兩側(cè)的兩個動點,且OAOB=5.
①求證:直線AB必過定點,并求出定點M的坐標(biāo);
②過點M作AB的垂線與拋物線交于G、H兩點,求四邊形AGBH面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.一個盒子里裝有5張卡片,其中有紅色卡片3張,編號分別為1,2,3;白色卡片2張,編號分別為2,3.
從盒子中任取2張卡片(假設(shè)取到任何一張卡片的可能性相同).
(1)求取出的2張卡片中,含有編號為3的卡片的概率.
(2)在取出的2張卡片中,紅色卡片編號的最大值設(shè)為X,求X=3的概率.
(3)求取出的2張卡片編號差的絕對值為1的概率.

查看答案和解析>>

同步練習(xí)冊答案