【題目】已知函數(shù)gx)=x21

1)求fx)在點(diǎn)(0,f0))處的切線(xiàn)方程.

2)若hx)=fx+gx)有兩個(gè)極值點(diǎn)x1x2x1x2),求證:x1fx1)>x2fx2).

【答案】1y=﹣ax;(2)見(jiàn)解析

【解析】

對(duì)函數(shù)進(jìn)行求導(dǎo),利用導(dǎo)數(shù)的幾何意義求出即為所求切線(xiàn)的斜率,代入點(diǎn)斜式求解即可;

對(duì)函數(shù)求導(dǎo),根據(jù)題意知,為方程的兩個(gè)不同的實(shí)根,利用判別式求出的取值范圍,再利用韋達(dá)定理判斷出的范圍, 要證明x1fx1)>x2fx2),即證明,根據(jù)題意分別求出的表達(dá)式,然后作差,結(jié)合韋達(dá)定理把代換,構(gòu)造函數(shù)mx)=2x1+21xlnx2xln1x),x,通過(guò)求導(dǎo)判斷其單調(diào)性和最值,證明上恒成立即可.

1)由題意知,,f0)=0,

fx)在(0,f0))處的切線(xiàn)方程y=﹣ax;

2)由題意可知,hx)=aln1x+x21x1,

所以0上有2個(gè)不同的實(shí)數(shù)根,

即方程﹣2x2+2xa0上有2個(gè)不同實(shí)根x1,x2,

所以△=48a0,即0a,

由韋達(dá)定理可得,,∴,

所以要證明x1fx1)>x2fx2),即證明,

因?yàn)?/span>,

所以

2x1ln1x1)﹣(1+x1),

同理2x2ln1x2)﹣(1+x2),

所以2x1ln1x1)﹣(1+x1)﹣2x2ln1x2+1+x2

2x1ln1x1)﹣2x2ln1x2+x2x1,

因?yàn)?/span>,所以

mx)=2x1+21xlnx2xln1x),x,

2[ln1x]

0在()上恒成立,

故函數(shù)mx)在()上單調(diào)遞增,mx)>m)=0,

0

x1fx1)>x2fx2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某度假酒店為了解會(huì)員對(duì)酒店的滿(mǎn)意度,從中抽取50名會(huì)員進(jìn)行調(diào)查,把會(huì)員對(duì)酒店的“住宿滿(mǎn)意度”與“餐飲滿(mǎn)意度”都分別五個(gè)評(píng)分標(biāo)準(zhǔn):1分(很不滿(mǎn)意);2分(不滿(mǎn)意);3分(一般);4分(滿(mǎn)意);5分(很滿(mǎn)意),其統(tǒng)計(jì)結(jié)果如下表(住宿滿(mǎn)意度為x,餐飲滿(mǎn)意度為y).

餐飲滿(mǎn)意度y

人數(shù)

住宿滿(mǎn)意度x

1

2

3

4

5

1

1

1

2

1

0

2

2

1

3

2

1

3

1

2

5

3

4

4

0

3

5

4

3

5

0

0

1

2

3

1)求“住宿滿(mǎn)意度”分?jǐn)?shù)的平均數(shù);

2)求“住宿滿(mǎn)意度”為3分時(shí)的5個(gè)“餐飲滿(mǎn)意度”人數(shù)的方差;

3)為提高對(duì)酒店的滿(mǎn)意度,現(xiàn)從的會(huì)員中隨機(jī)抽取2人征求意見(jiàn),求至少有1人的“住宿滿(mǎn)意度”為2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖四棱錐中,平面,,為線(xiàn)段上一點(diǎn),,的中點(diǎn).

1)證明平面;

2)求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

中,角AB、C的對(duì)邊分別為a、b、c,面積為S,已知

)求證:成等差數(shù)列;

)若.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義R在上的函數(shù)為奇函數(shù),并且其圖象關(guān)于x1對(duì)稱(chēng);當(dāng)x∈(01]時(shí),fx)=9x3.若數(shù)列{an}滿(mǎn)足anflog264+n))(nN+);若n≤50時(shí),當(dāng)Sna1+a2+…+an取的最大值時(shí),n_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中

(Ⅰ)當(dāng)為偶函數(shù)時(shí),求函數(shù)的極值;

(Ⅱ)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某芯片公司對(duì)今年新開(kāi)發(fā)的一批 5G 手機(jī)芯片進(jìn)行測(cè)評(píng),該公司隨機(jī)調(diào)查了 100 顆芯片,所調(diào)查的芯片得分均在7,19內(nèi),將所得統(tǒng)計(jì)數(shù)據(jù)分為如下:,,,, ,六個(gè)小組,得到如圖所示的頻率分布直方圖,其中.

1)求這 100 顆芯片評(píng)測(cè)分?jǐn)?shù)的平均數(shù);

2)芯片公司另選 100 顆芯片交付給某手機(jī)公司進(jìn)行測(cè)試,該手機(jī)公司將每顆芯片分別裝在 3 個(gè)工程手機(jī)中進(jìn)行初測(cè)若 3 個(gè)工程手機(jī)的評(píng)分都達(dá)到 13 萬(wàn)分,則認(rèn)定該芯片合格;若 3 個(gè)工程手機(jī)中只要有 2 個(gè)評(píng)分沒(méi)達(dá)到 13 萬(wàn)分,則認(rèn)定該芯片不合格;若 3 個(gè)工程手機(jī)中僅 1 個(gè)評(píng)分沒(méi)有達(dá)到 13萬(wàn)分,則將該芯片再分別置于另外 2 個(gè)工程手機(jī)中進(jìn)行二測(cè),二測(cè)時(shí),2 個(gè)工程手機(jī)的評(píng)分都達(dá)到 13萬(wàn)分,則認(rèn)定該芯片合格;2個(gè)工程手機(jī)中只要有 1 個(gè)評(píng)分沒(méi)達(dá)到 13 萬(wàn)分,手機(jī)公司將認(rèn)定該芯片不合格.已知每顆芯片在各次置于工程手機(jī)中的得分相互獨(dú)立,并且芯片公司對(duì)芯片的評(píng)分方法及標(biāo)準(zhǔn)與手機(jī)公司對(duì)芯片的評(píng)分方法及標(biāo)準(zhǔn)都一致(以頻率作為概率).每顆芯片置于一個(gè)工程手機(jī)中的測(cè)試費(fèi)用均為 160 元,每顆芯片若被認(rèn)定為合格或不合格,將不再進(jìn)行后續(xù)測(cè)試.現(xiàn)手機(jī)公司測(cè)試部門(mén)預(yù)算的測(cè)試經(jīng)費(fèi)為 5 萬(wàn)元,試問(wèn)預(yù)算經(jīng)費(fèi)是否足夠測(cè)試完這 100 顆芯片?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在信息時(shí)代的今天,隨著手機(jī)的發(fā)展,“微信”越來(lái)越成為人們交流的一種方法,某機(jī)構(gòu)對(duì)“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了100人,他們年齡的頻數(shù)分布及對(duì)“使用微信交流”贊成的人數(shù)如下表:(注:年齡單位:歲)

年齡

頻數(shù)

10

30

30

20

5

5

贊成人數(shù)

9

25

24

9

2

1

(1)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面的列聯(lián)表,并通過(guò)計(jì)算判斷是否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為“使用微信交流的態(tài)度與人的年齡有關(guān)”?

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計(jì)

贊成

不贊成

合計(jì)

(2)若從年齡在調(diào)查的人中各隨機(jī)選取1人進(jìn)行追蹤調(diào)查,求選中的2人中贊成“使用微信交流”的人數(shù)恰好為1人的概率.

0.025

0.010

0.005

0.001

3.841

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的短軸長(zhǎng)為,直線(xiàn)與橢圓相交于兩點(diǎn),線(xiàn)段的中點(diǎn)為.當(dāng)連線(xiàn)的斜率為時(shí),直線(xiàn)的傾斜角為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若是以為直徑的圓上的任意一點(diǎn),求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案