分析 先根據(jù)交點(diǎn)橫坐標(biāo)求出最小正周期,進(jìn)而可得w的值,再由當(dāng)x=2π時(shí)函數(shù)取得最大值確定φ的值,最后根據(jù)正弦函數(shù)的性質(zhì)可得到答案.
解答 解:∵函教f(x)=$\sqrt{{a}^{2}+1}$sin(ωx+φ)(ω>0)的圖象
與直線y=$\frac{1}{2}\sqrt{{a^2}+1}$的三個(gè)相鄰交點(diǎn)的橫坐標(biāo)分別是π,3π,7π,
∴當(dāng)x=2π時(shí)函數(shù)取得最大值,當(dāng)x=5π時(shí)函數(shù)取得最小值,T=6π,
且在區(qū)間[2π,5π]上單調(diào)遞減,
所以原函數(shù)遞減區(qū)間[6kπ+2π,6kπ+5π](k∈Z)
故答案:[6kπ+2π,6kπ+5π](k∈Z).
點(diǎn)評(píng) 本題考查了三角函數(shù)的圖象及性質(zhì),數(shù)形結(jié)合思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 設(shè)p:f(x)=x3+2x2+mx+1是R上的單調(diào)增函數(shù),$q:m≥\frac{4}{3}$,則p是q的必要不充分條件 | |
B. | 若命題$p:?{x_0}∈R,x_0^2-{x_0}+1≤0$,則¬p:?x∈R,x2-x+1>0 | |
C. | 奇函數(shù)f(x)定義域?yàn)镽,且f(x-1)=-f(x),那么f(8)=0 | |
D. | 命題“若x2+y2=0,則x=y=0”的逆否命題為“若x,y中至少有一個(gè)不為0,則x2+y2≠0” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(3)<f(-2)<f(1) | B. | f(1)<f(-2)<f(3) | C. | f(-2)<f(1)<f(3) | D. | f(3)<f(1)<f(-2) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com