5.已知點P(4,2)是直線l被橢圓$\frac{x^2}{36}+\frac{y^2}{9}=1$所截得的線段的中點,
(1)求直線l的方程
(2)求直線l被橢圓截得的弦長.

分析 (1)設直線l的方程為:y-2=k(x-4),交點A(x1,y1),B(x2,y2).與橢圓方程聯(lián)立化為關于x的一元二次方程,再利用根與系數(shù)的關系、中點坐標公式即可得出.
(2)利用弦長公式即可得出.

解答 解:(1)設直線l的方程為:y-2=k(x-4),交點A(x1,y1),B(x2,y2).
聯(lián)立$\left\{\begin{array}{l}{y=kx+2-4k}\\{{x}^{2}+4{y}^{2}=36}\end{array}\right.$,化為:(1+4k2)x2+8k(2-4k)x+4(2-4k)2-36=0.(*)
∴x1+x2=$-\frac{8k(2-4k)}{1+4{k}^{2}}$=8,解得k=-$\frac{1}{2}$
∴直線l的方程為:x+2y-8=0.
(2)把k=-$\frac{1}{2}$代入方程(*)可得:x2-8x+14=0,
∴x1+x2=8,x1x2=14.
∴|AB|=$\sqrt{(1+\frac{1}{4})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{\frac{5}{4}×({8}^{2}-4×14)}$=$\sqrt{10}$.

點評 本題考查了橢圓的標準方程及其性質(zhì)、直線與橢圓相交弦長問題、中點坐標公式、一元二次方程的根與系數(shù)的關系,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)y=$\sqrt{-{x^2}+4x-3}$的單調(diào)增區(qū)間是( 。
A.(-∞,2]B.[1,2]C.[1,3]D.[2,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在f(x)=sinωx+acosωx的圖象與直線y=$\frac{1}{2}\sqrt{{a^2}+1}$的交點中,三個相鄰交點的橫坐標分別為π,3π,7π,則f(x)的單調(diào)遞減區(qū)間為[6kπ+2π,6kπ+5π](k∈Z).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=cos$({x-\frac{π}{2}})$,g(x)=ex•f(x),其中e為自然對數(shù)的底數(shù).
(1)求曲線y=g(x)在點(0,g(0))處的切線方程;
(2)若對任意$x∈[{\frac{π}{4},\frac{π}{2}}]$時,方程g(x)=xf(x)的解的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.設橢圓的兩個焦點為(-$\sqrt{2}$,0),($\sqrt{2}$,0),一個頂點是($\sqrt{3}$,0),則橢圓的方程為$\frac{{x}^{2}}{3}$+y2=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點為F,若過F且傾斜角為$\frac{π}{3}$的直線與雙曲線的右支有且只有一個交點,則此雙曲線離心率的取值范圍是(  )
A.(2,+∞)B.[2,+∞)C.(1,2)D.(1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx,$g(x)=\frac{1}{2}ax+b$.
(1)若f(x)與g(x)在x=1處相切,試求g(x)的表達式;
(2)若$φ(x)=\frac{m(x-1)}{x+1}-f(x)$在[1,+∞)上是減函數(shù),求實數(shù)m的取值范圍;
(3)證明不等式:$\frac{2n}{n+1}<$$\frac{1}{ln2}+\frac{1}{ln3}+\frac{1}{ln4}+…+\frac{1}{ln(n+1)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.F1,F(xiàn)2分別為橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的左、右焦點,A為橢圓上一點,且$\overrightarrow{OB}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{O{F}_{1}}$),$\overrightarrow{OC}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{O{F}_{2}}$),則|$\overrightarrow{OB}$|+|$\overrightarrow{OC}$|=( 。
A.2$\sqrt{5}$B.2C.6D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若{$\frac{1}{{a}_{n}+1}$}為等差數(shù)列,a3=2,a7=1,則a11=( 。
A.0B.$\frac{1}{2}$C.$\frac{2}{3}$D.2

查看答案和解析>>

同步練習冊答案