20.$lg2+lg5+{({\frac{1}{2}})^{-2}}$=5.

分析 利用指數(shù)與對數(shù)的運(yùn)算法則即可得出.

解答 解:原式=1+2-1×(-2)=1+22=5.
故答案為:5.

點(diǎn)評 本題考查了指數(shù)與對數(shù)的運(yùn)算法則,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x-alnx+b,a,b為實(shí)數(shù).
(Ⅰ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x+3,求a,b的值;
(Ⅱ)若|f′(x)|<$\frac{3}{{x}^{2}}$對x∈[2,3]恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{3}{x^3}-{x^2}-3x-\frac{1}{3}$.
(1)求函數(shù)y=f(x)在(1,f(1))點(diǎn)處的切線方程;
(2)求函數(shù)y=f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.定義在(-1,1)的函數(shù)f(x)滿足:①對任意x,y∈(-1,1)都有f(x)+f(y)=f($\frac{x+y}{1+xy}$);②當(dāng)x<0時(shí),f(x)>0.回答下列問題:
(1)判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)判斷函數(shù)f(x)在(0,1)上的單調(diào)性,并說明理由;
(3)若f($\frac{1}{5}$)=$\frac{1}{2}$,試求f($\frac{1}{2}$)-f($\frac{1}{11}$)-f($\frac{1}{19}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在平面直角坐標(biāo)系中,“直線ax+y-1=0與直線x+ay+2=0平行”是“a=1”的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=$\frac{A}{sin(ωx+φ)}(A>0,ω>0,|φ|<\frac{π}{2})$的部分圖象如圖所示,則$f(\frac{3π}{2})$=( 。
A.$2\sqrt{3}$B.$-2\sqrt{3}$C.$2\sqrt{2}$D.$-2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知三條直線a、b、c兩兩平行且不共面,這三條直線可以確定m個(gè)平面,這m個(gè)平面把空間分成n個(gè)部分,則( 。
A.m=2  n=2B.m=2   n=6C.m=3   n=7D.m=3  n=8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,矩形ABCD中,$AB=\sqrt{2}AD$,E為邊AB的中點(diǎn),將△ADE沿直線DE翻轉(zhuǎn)成△A1DE.若M為線段A1C的中點(diǎn),則在△ADE翻轉(zhuǎn)過程中,下列結(jié)論中:①|(zhì)BM|是定值;②點(diǎn)M在球面上運(yùn)動;③DE⊥A1C;④MB∥平面A1DE.其中錯(cuò)誤的有( 。﹤(gè)
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.對任意實(shí)數(shù)x,不等式mx2-2mx-3<0恒成立,則實(shí)數(shù)m的取值范圍是(-3,0].

查看答案和解析>>

同步練習(xí)冊答案