12.已知三條直線a、b、c兩兩平行且不共面,這三條直線可以確定m個(gè)平面,這m個(gè)平面把空間分成n個(gè)部分,則( 。
A.m=2  n=2B.m=2   n=6C.m=3   n=7D.m=3  n=8

分析 利用推論三能求出m的值,再利用平面的基本性質(zhì)及推論能求出n的值.

解答 解:根據(jù)推論3(經(jīng)過兩條平行直線有且只有一個(gè)平面)知三條直線a、b、c兩兩平行但不共面時(shí),
這三條直線可以確定3個(gè)平面,即m=3.
三條直線把平面分成七個(gè)部分.
如把直線看成平面,則三個(gè)平面把空間也分成了七個(gè)部分,即n=7.
故選:C.

點(diǎn)評(píng) 本題考查平面的基本性質(zhì)及推論的應(yīng)用,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.自貢某工廠于2016年下半年對(duì)生產(chǎn)工藝進(jìn)行了改造(每半年為一個(gè)生產(chǎn)周期),從2016年一年的產(chǎn)品中用隨機(jī)抽樣的方法抽取了容量為50的樣本,用莖葉圖表示(如圖).已知每個(gè)生產(chǎn)周期內(nèi)與其中位數(shù)誤差在±5范圍內(nèi)(含±5)的產(chǎn)品為優(yōu)質(zhì)品,與中位數(shù)誤差在±15范圍內(nèi)(含±15)的產(chǎn)品為合格品(不包括優(yōu)質(zhì)品),與中位數(shù)誤差超過±15的產(chǎn)品為次品.企業(yè)生產(chǎn)一件優(yōu)質(zhì)品可獲利潤20元,生產(chǎn)一件合格品可獲利潤10元,生產(chǎn)一件次品要虧損10元
(Ⅰ)求該企業(yè)2016年一年生產(chǎn)一件產(chǎn)品的利潤為10的概率;
(Ⅱ)是否有95%的把握認(rèn)為“優(yōu)質(zhì)品與生產(chǎn)工藝改造有關(guān)”.
附:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=x2-2x,那么當(dāng)x>0時(shí),函數(shù)f(x)的解析式是$f(x)=\left\{\begin{array}{l}{{x}^{2}+2x,x>0}\\{{x}^{2}-2x,x≤0}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.$lg2+lg5+{({\frac{1}{2}})^{-2}}$=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=3-sinx-2cos2x,$x∈[{\frac{π}{6},\frac{7π}{6}}]$,則函數(shù)的最大值與最小值之差為( 。
A.$\frac{3}{8}$B.$\frac{5}{8}$C.$\frac{7}{8}$D.$\frac{9}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.定義運(yùn)算$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$,若$|{\begin{array}{l}{sinθ}&2\\{cosθ}&3\end{array}}|=0$,則2sin2θ+sinθcosθ的值是$\frac{14}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,網(wǎng)格紙上小正方形的邊長為1,下圖畫出的是某空間幾何體的三視圖,則該幾何體的最短棱長為( 。
A.4B.5C.4$\sqrt{2}$D.$\sqrt{41}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列{an}滿足a1=-1,${a_{2n}}-{a_{2n-1}}={2^{2n-1}}$,${a_{2n+1}}-{a_{2n}}={2^{2n}}$,則a10=1021.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.2016年8月江西某高校的成立了一個(gè)社會(huì)實(shí)踐調(diào)查小組,在對(duì)大學(xué)生的“4G使用流量問題”的調(diào)查中,隨機(jī)發(fā)放了120份問卷,對(duì)收回的100份有效問卷進(jìn)行統(tǒng)計(jì),得到如下2×2列聯(lián)表:
流量超過1000M流量沒有超過1000M合計(jì)
202545
401555
合計(jì)6040100
(1)現(xiàn)已按4G使用流量問題采用分層抽樣從45份男生問卷中抽取了9份問卷,試問應(yīng)該從“流量超過1000M”和“流量沒有超過1000M”各抽取多少人?
(2)如果認(rèn)為良好“4G使用流量問題”與性別有關(guān)犯錯(cuò)誤的概率不超過P,那么根據(jù)臨界值表最精確的P的值應(yīng)為多少?請(qǐng)說明理由.
附:獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d,
獨(dú)立性檢驗(yàn)臨界表:
P(K2≥k00.250.150.100.050.025
k01.3232.0722.7063.8405.024

查看答案和解析>>

同步練習(xí)冊(cè)答案