17.定義運(yùn)算$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$,若$|{\begin{array}{l}{sinθ}&2\\{cosθ}&3\end{array}}|=0$,則2sin2θ+sinθcosθ的值是$\frac{14}{13}$.

分析 根據(jù)題意得出3sinθ-2cosθ=0,再化2sin2θ+sinθcosθ=$\frac{{2sin}^{2}θ+sinθcosθ}{{sin}^{2}θ{+cos}^{2}θ}$,代入求值即可.

解答 解:根據(jù)題意,$|{\begin{array}{l}{sinθ}&2\\{cosθ}&3\end{array}}|=0$,
∴3sinθ-2cosθ=0,
∴tanθ=$\frac{sinθ}{cosθ}$=$\frac{2}{3}$,
∴2sin2θ+sinθcosθ=$\frac{{2sin}^{2}θ+sinθcosθ}{{sin}^{2}θ{+cos}^{2}θ}$
=$\frac{{2tan}^{2}θ+tanθ}{{tan}^{2}θ+1}$
=$\frac{2{×(\frac{2}{3})}^{2}+\frac{2}{3}}{{(\frac{2}{3})}^{2}+1}$
=$\frac{14}{13}$.
故答案為:$\frac{14}{13}$.

點評 本題考查了新定義的三角函數(shù)化簡與求值問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.“x≥1”是“l(fā)gx≥0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.定義在(-1,1)的函數(shù)f(x)滿足:①對任意x,y∈(-1,1)都有f(x)+f(y)=f($\frac{x+y}{1+xy}$);②當(dāng)x<0時,f(x)>0.回答下列問題:
(1)判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)判斷函數(shù)f(x)在(0,1)上的單調(diào)性,并說明理由;
(3)若f($\frac{1}{5}$)=$\frac{1}{2}$,試求f($\frac{1}{2}$)-f($\frac{1}{11}$)-f($\frac{1}{19}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=$\frac{A}{sin(ωx+φ)}(A>0,ω>0,|φ|<\frac{π}{2})$的部分圖象如圖所示,則$f(\frac{3π}{2})$=( 。
A.$2\sqrt{3}$B.$-2\sqrt{3}$C.$2\sqrt{2}$D.$-2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知三條直線a、b、c兩兩平行且不共面,這三條直線可以確定m個平面,這m個平面把空間分成n個部分,則( 。
A.m=2  n=2B.m=2   n=6C.m=3   n=7D.m=3  n=8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知全集U={1,2,3,4},集合A={1,3,4},B={2,3},則A∩(∁UB)=(  )
A.{2}B.{1,4}C.{3}D.{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,矩形ABCD中,$AB=\sqrt{2}AD$,E為邊AB的中點,將△ADE沿直線DE翻轉(zhuǎn)成△A1DE.若M為線段A1C的中點,則在△ADE翻轉(zhuǎn)過程中,下列結(jié)論中:①|(zhì)BM|是定值;②點M在球面上運(yùn)動;③DE⊥A1C;④MB∥平面A1DE.其中錯誤的有( 。﹤
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一個幾何體的三視圖如圖所示,則這個幾何體的表面積為( 。
A.40+8$\sqrt{2}$+4$\sqrt{6}$B.40+8$\sqrt{3}$+4$\sqrt{6}$C.48+8$\sqrt{3}$D.48+8$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.光線經(jīng)過點A(1,2)射到y(tǒng)軸上,反射后經(jīng)過點B(4,-3),則反射光線所在直線的方程為x+y-1=0.

查看答案和解析>>

同步練習(xí)冊答案