【題目】過拋物線y2=4x的焦點作直線AB交拋物線于A、B,求AB中點M的軌跡方程.

【答案】y2=2(x-1)

【解析】

A(x1,y1),B(x2,y2),則y12=4x1,y22=4x2,當時作差后整理可得(y1+y2)=4,AB中點M(x,y),根據(jù)中點公式可知y1+y2=2y,再由,代入(y1+y2)=4,即可求解.

解:設A(x1,y1),B(x2,y2),則y12=4x1,y22=4x2

時,作差可得(y1+y2)(y1-y2)=4(x1-x2),(y1+y2)=4,

拋物線的焦點為,設AB中點M(x,y),則y1+y2=2y,

所以,

所以,,

x1=x2時,M(1,0)滿足上式,

AB中點M軌跡方程為y2=2(x-1)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在邊長為2的正方形中, 是邊的中點.將沿折起使得平面平面,如圖2, 是折疊后的中點.

(Ⅰ)求證: 平面

(Ⅱ)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某生產(chǎn)基地有五臺機器,現(xiàn)有五項工作待完成,每臺機器完成每項工作后獲得的效益值如表所示.若每臺機器只完成一項工作,且完成五項工作后獲得的效益值總和最大,則下列敘述錯誤的的是_____________.

甲只能承擔第四項工作

乙不能承擔第二項工作

丙可以不承擔第三項工作

丁可以承擔第三項工作

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

時,求曲線處的切線方程;

(Ⅱ)求函數(shù)上的最小值;

(Ⅲ)若函數(shù),當時, 的最大值為,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,SA=SB=AB=BC=CA=6,且側(cè)面ASB⊥底面ABC,則三棱錐SABC外接球的表面積為( )

A. 60π B. 56π C. 52π D. 48π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,是邊長為2的等邊三角形,,,.

1)證明:平面平面

2,分別是的中點,是線段上的動點,若二面角的平面角的大小為,試確定點的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的兩個頂點A,B的坐標分別為(,0),(,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點分別為P,Q,R,|CP|=2,動點C的軌跡為曲線G.

1)求曲線G的方程;

2)設直線l與曲線G交于M,N兩點,點D在曲線G上,是坐標原點,判斷四邊形OMDN的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)求的極值點;

2)求方程的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論正確的是(

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中從事技術和運營崗位的人數(shù)占總?cè)藬?shù)的三成以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術崗位的人數(shù)超過總?cè)藬?shù)的20%

C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事技術崗位的人數(shù)90后比80后多

查看答案和解析>>

同步練習冊答案