如圖1,的直徑AB=4,點(diǎn)C、D為上兩點(diǎn),且CAB=45°,DAB=60°,F(xiàn)為弧BC的中點(diǎn).沿直徑AB折起,使兩個(gè)半圓所在平面互相垂直,如圖2.
(I)求證:OF平面ACD;
(Ⅱ)求二面角C—AD—B的余弦值;
(Ⅲ)在弧BD上是否存在點(diǎn)G,使得FG平面ACD?若存在,試指出點(diǎn)G的位置;若不存在,請說明理由.
(1)對于線面平行的判定關(guān)鍵是證明來得到。
(2)
(3) 在弧上存在點(diǎn),使得//平面,且點(diǎn)為弧的中點(diǎn)
解析試題分析:(方法一):證明:(Ⅰ)如右圖,連接,
,. …1分 又為弧的中點(diǎn),,.平面,平面,平面. …4分
解:(Ⅱ)過作于,連.
,平面⊥平面.
⊥平面.又平面, , 平面,,則∠是二面角的平面角. ,, . 由⊥平面,平面,得為直角三角形,,==. 8分
(Ⅲ)取弧的中點(diǎn),連結(jié)、,則
…平面,平面平面//平面.
因此,在弧上存在點(diǎn),使得//平面,且點(diǎn)為弧的中點(diǎn).…12分
(方法二):證明:(Ⅰ)如圖,以所在的直線為軸,以所在的直線為軸,以為原點(diǎn),建立空間直角坐標(biāo)系
則
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直角梯形中,,∥,,為線段的中點(diǎn),將沿折起,使平面⊥平面,得到幾何體.
(1)若,分別為線段,的中點(diǎn),求證:∥平面;
(2)求證:⊥平面;
(3)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,圓錐頂點(diǎn)為.底面圓心為,其母線與底面所成的角為.和是底面圓上的兩條平行的弦,軸與平面所成的角為,
(Ⅰ)證明:平面與平面的交線平行于底面;
(Ⅱ)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖平面SAC⊥平面ACB,ΔSAC是邊長為4的等邊三角形,ΔACB為直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直三棱柱的三視圖如圖所示,是的中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)試問線段上是否存在點(diǎn),使與成 角?若存在,確定點(diǎn)位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
幾何體EFG —ABCD的面ABCD,ADGE,DCFG均為矩形,AD=DC=l,AE=。
(I)求證:EF⊥平面GDB;
(Ⅱ)線段DG上是否存在點(diǎn)M使直線BM與平面BEF所成的角為45°,若存在求等¥ 的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,四棱錐中,底面,面是直角梯形,為側(cè)棱上一點(diǎn).該四棱錐的俯視圖和側(cè)(左)視圖如圖2所示.
(1)證明:平面;
(2)線段上是否存在點(diǎn),使與所成角的余弦值為?若存在,找到所有符合要求的點(diǎn),并求的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,平面PAD⊥平面ABCD,
PA=BC=1,PD=AB=,E、F分別為線段PD和BC的中點(diǎn).
(Ⅰ) 求證:CE∥平面PAF;
(Ⅱ)在線段BC上是否存在一點(diǎn)G,使得平面PAG和平面PGC所成二面角的大小為60°?若存在,試確定G的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com