如圖,在直角梯形中,,∥,,為線段的中點(diǎn),將沿折起,使平面⊥平面,得到幾何體.
(1)若,分別為線段,的中點(diǎn),求證:∥平面;
(2)求證:⊥平面;
(3)的值.
(1)主要證明∥ (2)主要證明⊥ (3)
解析試題分析:解:(1)證明:依題意,折疊前后、位置關(guān)系不改變,
∴∥.
∵、分別為線段、的中點(diǎn),
∴在中,∥,∴∥.
又平面,平面,
∴∥平面.
(2)證明:將沿折起后,、位置關(guān)系不改變,
∴⊥,
又平面⊥平面,平面平面=,平面,
∴⊥平面.
(3)解:由已知得,
又由(2)得⊥平面,即點(diǎn)到平面的距離,
∴===×=.
考點(diǎn):平面與平面垂直的性質(zhì);棱柱、棱錐、棱臺(tái)的體積;直線與平面平行的判定.
點(diǎn)評(píng):熟練掌握三角形的中位線定理、線面平行的判定定理及面面、線面垂直的判定和性質(zhì)定理是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),曲線在處的切線過(guò)點(diǎn).
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)當(dāng)時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱柱中, 是上的點(diǎn)且為中邊上的高.
(Ⅰ)求證:平面;
(Ⅱ)求證:;
(Ⅲ)線段上是否存在點(diǎn),使平面?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是正方形,⊥面,且,是側(cè)棱的中點(diǎn).
(1)求證∥平面;
(2)求證平面平面;
(3)求直線與底面所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知三棱錐中,,平面,分別是直線上的點(diǎn),且
(1) 求二面角平面角的余弦值
(2) 當(dāng)為何值時(shí),平面平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知三棱錐的側(cè)棱兩兩垂直,且,,是的中點(diǎn).
(1)求異面直線與所成的角的余弦值
(2)求二面角的余弦值
(3)點(diǎn)到面的距離
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在如圖所示的幾何體中,是邊長(zhǎng)為2的正三角形,平面ABC,平面平面ABC,BD=CD,且.
(1)若AE=2,求證:AC∥平面BDE;
(2)若二面角A—DE—B為60°.求AE的長(zhǎng)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知在四棱錐中,底面是邊長(zhǎng)為2的正方形,側(cè)棱平面,且, 為底面對(duì)角線的交點(diǎn),分別為棱的中點(diǎn)
(1)求證://平面;
(2)求證:平面;
(3)求點(diǎn)到平面的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,的直徑AB=4,點(diǎn)C、D為上兩點(diǎn),且CAB=45°,DAB=60°,F(xiàn)為弧BC的中點(diǎn).沿直徑AB折起,使兩個(gè)半圓所在平面互相垂直,如圖2.
(I)求證:OF平面ACD;
(Ⅱ)求二面角C—AD—B的余弦值;
(Ⅲ)在弧BD上是否存在點(diǎn)G,使得FG平面ACD?若存在,試指出點(diǎn)G的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com