11.(1)求值:sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°);
(2)寫出函數(shù)f(x)=${({\frac{1}{3}})^{sinx}}$的單調(diào)區(qū)間.

分析 (1)直接利用誘導公式以及特殊角化簡求解即可.
(2)利用正弦函數(shù)的單調(diào)區(qū)間以及指數(shù)函數(shù)的單調(diào)性求解即可.

解答 解:(1)sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°)
=$\frac{3}{4}$-1+1-$\frac{3}{4}$+$\frac{1}{2}$
=$\frac{1}{2}$.
(2)函數(shù)f(x)=$(\frac{1}{3})^{x}$是減函數(shù),y=sinx的增區(qū)間為:$[{\frac{π}{2}+2kπ,\frac{3π}{2}+2kπ}]$.k∈Z.
減區(qū)間為:$[{-\frac{π}{2}+2kπ,\frac{π}{2}+2kπ}]$,k∈Z
所以函數(shù)f(x)=${({\frac{1}{3}})^{sinx}}$的增區(qū)間:$[{-\frac{π}{2}+2kπ,\frac{π}{2}+2kπ}]$,減區(qū)間:$[{\frac{π}{2}+2kπ,\frac{3π}{2}+2kπ}]$.k∈Z.

點評 本題考查三角函數(shù)的化簡求值,復合函數(shù)的單調(diào)性的求法,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.函數(shù)f(x)是定義在(0,+∞)上的增函數(shù),f(2)=1,且對任意的x,y>0滿足f(x)+f(y)=f(xy).
(1)計算f(1),f(4);
(2)解不等式f(x)-f(x-3)≤2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)y=f(x)(x∈R)滿足f(x+1)=f(x-1)且當x∈[-1,1]時,f(x)=x2,則函數(shù)y=f(x)-log5x的零點個數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設數(shù)列{an}的前n項和為Sn,且Sn=$\frac{{3}^{n}-1}{2}$,記bn=2(1+log3an) (n∈N*).
(Ⅰ)求數(shù)列{anbn}的前n項和Tn;
(Ⅱ)求證:對于任意的正整數(shù)n,都有$\frac{1+_{1}}{_{1}}$•$\frac{1+_{2}}{_{2}}$•…•$\frac{1+_{n}}{_{n}}$<$\sqrt{2n+1}$成立;
(Ⅲ)求證:對于任意的正整數(shù)n,都有($\frac{_{1}-1}{_{1}}$)2•($\frac{_{2}-1}{_{2}}$)2•…•($\frac{_{n}-1}{_{n}}$)2≥$\frac{1}{4n}$成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.如圖,拿一張矩形的紙對折后略微展開,豎立在桌面上,折痕與桌面的位置關系是垂直.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.若兩圓的半徑分別為3和8,圓心距為13,試求兩圓的外公切線的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1的右焦點為F,過F作斜率為2的直線l,直線l與雙曲線的右支有且只有一個公共點,則雙曲線的離心率范圍$(1,\sqrt{5}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.函數(shù)f(x)=$\frac{1}{|x|-a}$-b(a>0)的圖象因酷似漢字的“囧”字,而被稱為“囧函數(shù)”.則方程$\frac{1}{|x|-1}$=x2-1的實數(shù)根的個數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,AC=2,BC=4,∠ACB=$\frac{2}{3}$π,直角梯形BCDE中,BC∥DE,∠BCD=$\frac{π}{2}$,DE=2,且直線AE與CD所成角為$\frac{π}{3}$,AB⊥CD.
(1)求證:平面ABC⊥平面BCDE;
(2)求三棱錐C-ABE的體積.

查看答案和解析>>

同步練習冊答案