14.函數(shù)f(x)=Asin(ωx+φ)(A,ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,則tanφ=$\sqrt{3}$.

分析 根據(jù)函數(shù)f(x)的圖象求出A、T、ω和φ的值,計(jì)算tanφ的值.

解答 解:根據(jù)函數(shù)f(x)=Asin(ωx+φ)的圖象知,
A=1,$\frac{T}{4}$=$\frac{7π}{12}$-$\frac{π}{3}$=$\frac{π}{4}$,
∴T=π,∴ω=$\frac{2π}{T}$=2;
根據(jù)五點(diǎn)法畫圖知,
ω•$\frac{π}{3}$+φ=2×$\frac{π}{3}$+φ=π,
解得φ=$\frac{π}{3}$,
∴tanφ=tan$\frac{π}{3}$=$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點(diǎn)評(píng) 本題考查了由函數(shù)f(x)=Asin(ωx+φ)的圖象求解析式的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-\frac{2}{x}-\frac{1}{e},x<0}\\{\frac{lnx}{x},x>0}\end{array}\right.$若關(guān)于x的方程f(x)=t有三個(gè)不同的解,其中最小的解為a,則$\frac{t}{a}$的取值范圍為(-$\frac{1}{{e}^{2}}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知全集U=R,集合M={x|x2-4≤0},則∁UM=( 。
A.{x|-2<x<2}B.{x|-2≤x≤2}C.{x|x<-2或x>2}D.{x|x≤-2或x≥2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列函數(shù)為奇函數(shù)的是( 。
A.y=x2B.y=cosxC.y=sinxD.y=2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知a∈R,函數(shù)f(x)=alnx-(a+1)x+$\frac{1}{2}{x^2}$.
(1)若函數(shù)y=f(x)在x=3處取得極值,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若a<0,且函數(shù)y=f(x)有兩個(gè)不同的零點(diǎn),求a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知數(shù)列{an}的前n項(xiàng)和Sn=an+1-1,a1=1,(n∈N*).?dāng)?shù)列{bn}滿足b1=1,bn+1=bn+an+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的通項(xiàng)公式;
(3)若cn=an•log2(bn+1),求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)y=ax2-2x的圖象上有且僅有兩個(gè)點(diǎn)到直線y=x的距離等于$\sqrt{2}$,則實(shí)數(shù)a的取值集合是{a|a<-$\frac{9}{8}$或a=0或a$>\frac{9}{8}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是$\frac{2}{3}$和$\frac{3}{4}$.假設(shè)兩人射擊是否擊中目標(biāo)相互之間沒(méi)有影響;每人各次射擊是否擊中目標(biāo)相互之間也沒(méi)有影響.
(1)求甲射擊4次,至少有1次未擊中目標(biāo)的概率;
(2)求兩人各射擊4次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.以(-1,2)為圓心且過(guò)原點(diǎn)的圓的方程為(x+1)2+(y-2)2=5.

查看答案和解析>>

同步練習(xí)冊(cè)答案