【題目】分別為內(nèi)角所對(duì)的邊,且滿足,

(I)求C的大小;

(II)現(xiàn)給出三個(gè)條件:①;②;③.試從中選擇兩個(gè)可以確定的條件寫出你的選擇并以此為依據(jù)求的面積S.(只寫出一種情況即可)

【答案】(Ⅰ)(Ⅱ)詳見解析

【解析】

(Ⅰ)由兩角和的正弦函數(shù)公式化簡(jiǎn)已知等式可得,結(jié)合角C范圍可得C值.(Ⅱ)方案一:選條件,由余弦定理可求b,a的值,根據(jù)三角形面積公式即可計(jì)算得解;方案二:選條件,由正弦定理得,根據(jù)兩角和的正弦公式可求sinA值,根據(jù)三角形面積公式即可計(jì)算得解.若選條件,可得sinA1,這樣的三角形不存在.

解:(Ⅰ)依題意得:,

,

,∴,

,∴

(Ⅱ)方案一:選條件①和③,

由余弦定理,有,

,,

所以

方案二:選條件②和③,

由正弦定理,得,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著“互聯(lián)網(wǎng)+交通”模式的迅猛發(fā)展,“共享助力單車”在很多城市相繼出現(xiàn).某“共享助力單車”運(yùn)營(yíng)公司為了解某地區(qū)用戶對(duì)該公司所提供的服務(wù)的滿意度,隨機(jī)調(diào)查了100名用戶,得到用戶的滿意度評(píng)分(滿分10分),現(xiàn)將評(píng)分分為5組,如下表:

組別

滿意度評(píng)分

[0,2)

[2,4)

[4,6)

[6,8)

[8,10]

頻數(shù)

5

10

a

32

16

頻率

0.05

b

0.37

c

0.16

(1)求表格中的a,b,c的值;

(2)估計(jì)用戶的滿意度評(píng)分的平均數(shù);

(3)若從這100名用戶中隨機(jī)抽取25人,估計(jì)滿意度評(píng)分低于6分的人數(shù)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解華師一附中學(xué)生喜歡吃辣是否與性別有關(guān),調(diào)研部(共10人)分三組對(duì)高中三個(gè)年級(jí)的學(xué)生進(jìn)行調(diào)查,每個(gè)年級(jí)至少派3個(gè)人進(jìn)行調(diào)查.(1)求調(diào)研部的甲、乙兩人都被派到高一年級(jí)進(jìn)行調(diào)查的概率.(2)調(diào)研部對(duì)三個(gè)年級(jí)共100人進(jìn)行了調(diào)查,得到如下的列聯(lián)表,請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有以上的把握認(rèn)為喜歡吃辣與性別有關(guān)?

喜歡吃辣

不喜歡吃辣

合計(jì)

男生

10

女生

20

30

合計(jì)

100

參考數(shù)據(jù):

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解人們對(duì)“延遲退休年齡政策”的態(tài)度,某部門從年齡在15歲到65歲的人群中隨機(jī)調(diào)查了100人,并得到如圖所示的頻率分布直方圖,在這100人中不支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如表所示:

(1)由頻率分布直方圖,估計(jì)這100人年齡的平均數(shù);

(2)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的22列聯(lián)表,據(jù)此表,能否在犯錯(cuò)誤的概率不超過5%的前提下,認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的態(tài)度存在差異?

45歲以下

45歲以上

總計(jì)

不支持

支持

總計(jì)

參考數(shù)據(jù):

P(K2≥k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)在區(qū)間上有最大值4,最小值為0.

1)求函數(shù)的解析式;

2)設(shè),若對(duì)任意恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)是定義域?yàn)?/span>R上的奇函數(shù),當(dāng)x0時(shí),fx=x2+2x

1)求fx)的解析式;

2)若不等式ft﹣2+f2t+1)>0成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)若,且,求的最小值;

(2)若,且上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線過點(diǎn),其參數(shù)方程為為參數(shù),),以為極點(diǎn),軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)求已知曲線和曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若質(zhì)地均勻的六面體玩具各面分別標(biāo)有數(shù)字1,2,3,4,5,6.拋擲該玩具后,任何一個(gè)數(shù)字所在的面朝上的概率均相等.拋擲該玩具一次,記事件A=“向上的面標(biāo)記的數(shù)字是完全平方數(shù)(即能寫出整數(shù)的平方形式的數(shù),如9=32,9是完全平方數(shù))

(1)甲、乙二人利用該玩具進(jìn)行游戲,并規(guī)定:①甲拋擲一次,若事件A發(fā)生,則向上一面的點(diǎn)數(shù)的6倍為甲的得分;若事件A不發(fā)生,則甲得0分;②乙拋擲一次,將向上的一面對(duì)應(yīng)的數(shù)字作為乙的得分,F(xiàn)甲、乙二人各拋擲該玩具一次,分別求二人得分的期望;

(2)拋擲該玩具一次,記事件B=“向上一面的點(diǎn)數(shù)不超過,若事件AB相互獨(dú)立,試求出所有的整數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案