11.函數(shù)y=x2-2bx+c在[1,+∞)上為增函數(shù),則b的取值范圍是( 。
A.b≥1B.b≤1C.b≥-1D.b≤-1

分析 分析函數(shù)f(x)=x2-2bx+c的圖象和性質(zhì),利用二次函數(shù)的單調(diào)性即可得出b的取值范圍.

解答 解:函數(shù)f(x)=x2-2bx+c的圖象是開口朝上,且以直線x=b為對(duì)稱軸的拋物線,
若函數(shù)f(x)=x2-2bx+c在區(qū)間[1,+∞)上是增函數(shù),
則b≤1,
故選:B.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的單調(diào)性是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.將函數(shù)f(x)=$\sqrt{3}$sin2x-cos2x的圖象向右平移m個(gè)單位(m>0),若所得圖象對(duì)應(yīng)的函數(shù)為偶函數(shù),則m的最小值是$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)數(shù)列{an}的前n項(xiàng)和是Sn,滿足$n({{S_{n+1}}+{S_{n-1}}-2{S_n}})=2+{a_n}({n≥2,n∈{N^*}})$,a1=1,a2=2,則當(dāng)n≥2時(shí),Sn=n2-n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知$\vec a=({{x^2},2x})$,$\vec b=({1,tanθ})$,函數(shù)$f(x)=\vec a•\vec b-1$,$x∈[-1,\sqrt{3}]$,其中$θ∈({-\frac{π}{2},\frac{π}{2}})$.
(1)當(dāng)$θ=-\frac{π}{6}$時(shí),求函數(shù)f(x)的最大值和最小值;
(2)求θ的取值范圍,使y=f(x)在區(qū)間$[-1,\sqrt{3}]$上是單調(diào)的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知點(diǎn)P是△ABC內(nèi)一點(diǎn)(不包括邊界),且$\overrightarrow{AP}=m\overrightarrow{AB}+n\overrightarrow{AC}$,m,n∈R,則(m-2)2+(n-2)2的取值范圍是$(\frac{9}{2},8)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知二次函數(shù)f(x)=ax2+bx+c(a<0)不等式f(x)>-2x的解集為(1,3)
(Ⅰ)若方程f(x)+6a=0有兩個(gè)相等的實(shí)根,求f(x)的解析式;
(Ⅱ)若f(x)的最大值為正數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.$\int\begin{array}{l}1\\ 0\end{array}({e^x}+2x)dx$=e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)a>0,b>0,若3a與3b的等比中項(xiàng)是$\sqrt{3}$,則$\frac{1}{a}$+$\frac{4}$的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在這四個(gè)函數(shù):①y=sin|x|、②y=|sinx|、③y=sin(2x+$\frac{2π}{3}$)、④y=tan(2x+$\frac{2π}{3}$)中,最小正周期為 π 的函數(shù)有( 。
A.①②③④B.①②③C.②③④D.②③

查看答案和解析>>

同步練習(xí)冊(cè)答案