2.在無窮等比數(shù)列{an}中,$\lim_{n→∞}({a_1}+{a_2}+…+{a_n})=\frac{1}{2}$,則a1的取值范圍是(  )
A.$({0,\frac{1}{2}})$B.$({\frac{1}{2},1})$C.(0,1)D.$({0,\frac{1}{2}})∪$$({\frac{1}{2},1})$

分析 利用無窮等比數(shù)列和的極限,列出方程,推出a1的取值范圍.

解答 解:在無窮等比數(shù)列{an}中,$\lim_{n→∞}({a_1}+{a_2}+…+{a_n})=\frac{1}{2}$,
可知|q|<1,則$\frac{{a}_{1}}{1-q}$=$\frac{1}{2}$,
a1=$\frac{1}{2}(1-q)$∈(0,$\frac{1}{2}$)∪($\frac{1}{2}$,1).
故選:D.

點評 本題考查數(shù)列的極限的求法,等比數(shù)列的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.甲乙兩人有三個不同的學(xué)習(xí)小組A,B,C可以參加,若每人必須參加并且僅能參加一個學(xué)習(xí)小組,則兩人參加不同小組的概率為(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在正三棱柱ABC-A1B1C1中,AB=1,BB1=2,求:
(1)異面直線B1C1與A1C所成角的大小;
(2)四棱錐A1-B1BCC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,我海監(jiān)船在D島海域例行維權(quán)巡航,某時刻航行至A處,此時測得其北偏東30°方向與它相距20海里的B處有一外國船只,且D島位于海監(jiān)船正東18海里處.
(1)求此時該外國船只與D島的距離;
(2)觀測中發(fā)現(xiàn),此外國船只正以每小時4海里的速度沿正南方航行.為了將該船攔截在離D島12海里的E處(E在B的正南方向),不讓其進入D島12海里內(nèi)的海域,試確定海監(jiān)船的航向,并求其速度的最小值(角度精確到0.1°,速度精確到0.1海里/小時).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.用半徑1米的半圓形薄鐵皮制作圓錐型無蓋容器,其容積為$\frac{\sqrt{3}π}{24}$立方米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)雙曲線C:$\frac{x^2}{2}-\frac{y^2}{3}=1$,F(xiàn)1,F(xiàn)2為其左右兩個焦點.
(1)設(shè)O為坐標原點,M為雙曲線C右支上任意一點,求$\overrightarrow{OM}•\overrightarrow{{F_1}M}$的取值范圍;
(2)若動點P與雙曲線C的兩個焦點F1,F(xiàn)2的距離之和為定值,且cos∠F1PF2的最小值為$-\frac{1}{9}$,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.執(zhí)行如圖所示的程序框圖,若輸入n=1的,則輸出S=log319. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)P(x,y)是曲線C:$\sqrt{\frac{{x}^{2}}{25}}$+$\sqrt{\frac{{y}^{2}}{9}}$=1上的點,F(xiàn)1(-4,0),F(xiàn)2(4,0),則|PF1|+|PF2|的最大值=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{y≥x}\\{x+2y≤2}\\{x≥-2}\end{array}\right.$,則z=x-3y的最大值為( 。
A.-2B.4C.-6D.-8

查看答案和解析>>

同步練習(xí)冊答案