【題目】定義“正對(duì)數(shù)”:,現(xiàn)有四個(gè)命題:

①若,,則;

②若,則;

③若,,則

④若,,則.

則所有真命題的序號(hào)為

A.①②③B.①②④C.③④D.②③④

【答案】D

【解析】

對(duì)于①,通過(guò)舉反例說(shuō)明錯(cuò)誤;對(duì)于②,由“正對(duì)數(shù)”的定義分別對(duì),,兩種情況進(jìn)行推理;對(duì)于③④,分別從四種情況,即當(dāng),時(shí);當(dāng),時(shí);當(dāng),時(shí);當(dāng),時(shí)進(jìn)行推理.

對(duì)于①,當(dāng),時(shí),滿(mǎn)足,而,

,,命題①錯(cuò)誤;

對(duì)于②,當(dāng)時(shí),有,

從而,,;

當(dāng)時(shí),有,從而,

.

當(dāng),時(shí),,命題②正確;

對(duì)于③,由“正對(duì)數(shù)”的定義知,

當(dāng),時(shí),,而,則;

當(dāng),時(shí),有,,而,

,則

當(dāng),時(shí),有,而,則

當(dāng)時(shí),,則

當(dāng)時(shí),,命題③正確;

對(duì)于④,由“正對(duì)數(shù)”的定義知,當(dāng)時(shí),有.

當(dāng),時(shí),有

從而

;

當(dāng),時(shí),有,從而,,

當(dāng),時(shí),有,從而,

;

當(dāng),時(shí),,

,

從而,命題④正確.

正確的命題是②③④.

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓,左、右焦點(diǎn)分別是、,為圓心,3為半徑的圓與以為圓心,1為半徑的圓相交于橢圓上的點(diǎn)

1)求橢圓的方程;

2)設(shè)橢圓,為橢圓上任意一點(diǎn),過(guò)點(diǎn)的直線交橢圓兩點(diǎn),射線交橢圓于點(diǎn)

①求的值;

②令,的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

已知橢圓和拋物線有公共焦點(diǎn)F(1,0),的中心和的頂點(diǎn)都在坐標(biāo)原點(diǎn),過(guò)點(diǎn)M4,0)的直線與拋物線分別相交于A,B兩點(diǎn).

)寫(xiě)出拋物線的標(biāo)準(zhǔn)方程;

)若,求直線的方程;

)若坐標(biāo)原點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn)在拋物線上,直線與橢圓有公共點(diǎn),求橢圓的長(zhǎng)軸長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】南充高中扎實(shí)推進(jìn)陽(yáng)光體育運(yùn)動(dòng),積極引導(dǎo)學(xué)生走向操場(chǎng),走進(jìn)大自然,參加體育鍛煉,每天上午第三節(jié)課后全校大課間活動(dòng)時(shí)長(zhǎng)35分鐘.現(xiàn)為了了解學(xué)生的體育鍛煉時(shí)間,采用簡(jiǎn)單隨機(jī)抽樣法抽取了100名學(xué)生,對(duì)其平均每日參加體育鍛煉的時(shí)間(單位:分鐘)進(jìn)行調(diào)查,按平均每日體育鍛煉時(shí)間分組統(tǒng)計(jì)如下表:

分組

男生人數(shù)

2

16

19

18

5

3

女生人數(shù)

3

20

10

2

1

1

若將平均每日參加體育鍛煉的時(shí)間不低于120分鐘的學(xué)生稱(chēng)為鍛煉達(dá)人”.

1)將頻率視為概率,估計(jì)我校7000名學(xué)生中鍛煉達(dá)人有多少?

2)從這100名學(xué)生的鍛煉達(dá)人中按性別分層抽取5人參加某項(xiàng)體育活動(dòng).

①求男生和女生各抽取了多少人;

②若從這5人中隨機(jī)抽取2人作為組長(zhǎng)候選人,求抽取的2人中男生和女生各1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的上下兩個(gè)焦點(diǎn)分別為,過(guò)點(diǎn)軸垂直的直線交橢圓兩點(diǎn), 的面積為,橢圓的離心率為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知為坐標(biāo)原點(diǎn),直線軸交于點(diǎn),與橢圓交于兩個(gè)不同的點(diǎn),若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)是由曲線確定的.

1)寫(xiě)出函數(shù),并判斷該函數(shù)的奇偶性;

2)求函數(shù)的單調(diào)區(qū)間并證明其單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

1)分別求、的定義域,并求的值;

2)求的最小值并說(shuō)明理由;

3)若,,是否存在滿(mǎn)足下列條件的正數(shù),使得對(duì)于任意的正數(shù)、、都可以成為某個(gè)三角形三邊的長(zhǎng)?若存在,則求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

1)當(dāng)時(shí),對(duì)于一切,函數(shù)在區(qū)間內(nèi)總存在唯一零點(diǎn),求的取值范圍;

2)當(dāng)時(shí),數(shù)列的前項(xiàng)和,若是單調(diào)遞增數(shù)列,求的取值范圍;

3)當(dāng),時(shí),函數(shù)在區(qū)間內(nèi)的零點(diǎn)為,判斷數(shù)列、、、、的增減性,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】大數(shù)據(jù)時(shí)代對(duì)于現(xiàn)代人的數(shù)據(jù)分析能力要求越來(lái)越高,數(shù)據(jù)擬合是一種把現(xiàn)有數(shù)據(jù)通過(guò)數(shù)學(xué)方法來(lái)代入某條數(shù)式的表示方式,比如,2,n是平面直角坐標(biāo)系上的一系列點(diǎn),用函數(shù)來(lái)擬合該組數(shù)據(jù),盡可能使得函數(shù)圖象與點(diǎn)列比較接近.其中一種描述接近程度的指標(biāo)是函數(shù)的擬合誤差,擬合誤差越小越好,定義函數(shù)的擬合誤差為:.已知平面直角坐標(biāo)系上5個(gè)點(diǎn)的坐標(biāo)數(shù)據(jù)如表:

x

1

3

5

7

9

y

12

4

12

若用一次函數(shù)來(lái)擬合上述表格中的數(shù)據(jù),求該函數(shù)的擬合誤差的最小值,并求出此時(shí)的函數(shù)解析式;

若用二次函數(shù)來(lái)擬合題干表格中的數(shù)據(jù),求

請(qǐng)比較第問(wèn)中的和第問(wèn)中的,用哪一個(gè)函數(shù)擬合題目中給出的數(shù)據(jù)更好?請(qǐng)至少寫(xiě)出三條理由

查看答案和解析>>

同步練習(xí)冊(cè)答案