【題目】已知函數f(x)=x3-x2+cx+d有極值.
(1)求實數c的取值范圍;
(2)若f(x)在x=2處取得極值,且當x<0時,f(x)<d2+2d恒成立,求實數d的取值范圍.
【答案】(1);(2)(-∞,-7)∪(1,+∞).
【解析】
(1)求出導函數的解析式,然后根據函數有極值,方程有兩個實數解,構造關于的不等式,解不等式即可得到的取值范圍;(2)若在處取得極值,則,求出滿足條件的值后,可以分析出函數的單調性,進而分析出當時,函數的最大值,又由當時,恒成立,可以構造出一個關于的不等式,解不等式即可得到的取值范圍.
(1)∵f(x)=x3-x2+cx+d,∴f′(x)=x2-x+c,
要使f(x)有極值,則方程f′(x)=x2-x+c=0有兩個不相等的實數解,
從而Δ=1-4c>0,∴c<, 即實數c的取值范圍為.
(2)∵f(x)在x=2處取得極值,
∴f′(2)=4-2+c=0,∴c=-2,∴f(x)=x3-x2-2x+d.
∵f′(x)=x2-x-2=(x-2)(x+1),
∴當x∈(-∞,-1]時,f′(x)>0,函數單調遞增;
當x∈(-1,2]時,f′(x)<0,函數單調遞減.
∴x<0時,f(x)在x=-1處取得最大值+d,
∵x<0時,f(x)<d2+2d恒成立,∴+d<d2+2d,即(d+7)(d-1)>0,∴d<-7或d>1,
即實數d的取值范圍是(-∞,-7)∪(1,+∞).
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=aln(x+1)+x2-ax+1(a>1).
(1)求函數y=f(x)在點(0,f(0))處的切線方程;
(2)當a>1時,求函數y=f(x)的單調區(qū)間和極值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四面體ABCD中,已知∠ADB=∠BDC=∠CDA=60°,AD=BD=3,CD=2,則四面體ABCD的外界球的半徑為( )
A.
B.2
C.3
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數方程為(為參數),在以原點為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程為.
(1)求曲線的普通方程和直線的傾斜角;
(2)設點,直線和曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】購買一件售價為5 000元的商品,采用分期付款的辦法,每期付款數相同,購買后1個月付款一次,過1個月再付款一次,如此下去,到第12次付款后全部付清.如果月利率為0.8%,每月利息按復利計算(上月利息計入下月本金),那么每期應付款多少元?(精確到1元)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,ABCD為矩形,PA⊥平面ABCD,PA=AD,M,N,Q分別是PC,AB,CD的中點.
求證:(1)MN∥平面PAD;
(2)平面QMN∥平面PAD.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com