【題目】已知曲線,直線(為參數(shù))
寫出曲線的參數(shù)方程,直線的普通方程;
過曲線上任意一點作與夾角為30°的直線,交于點,求的最大值與最小值.
【答案】(1)曲線C的參數(shù)方程為,(為參數(shù)),直線的普通方程為.
(2)最大值為;最小值為.
【解析】
試題分析:(1)根據(jù)題意易得:曲線C的參數(shù)方程為,(為參數(shù)),直線的普通方程為;(2)由第(1)中設(shè)曲線C上任意一點,利用點到直線的距離公式可求得:距離為,則,其中為銳角,且,當(dāng)時,取得最大值,最大值為.當(dāng)時,取得最小值,最小值為.
試題解析:(1)曲線C的參數(shù)方程為,(為參數(shù)),
直線的普通方程為.
(2)曲線C上任意一點到的距離為
.
則,其中為銳角,且,
當(dāng)時,取得最大值,最大值為.
當(dāng)時,取得最小值,最小值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{e1,e2,e3}是空間的一個基底,且=e1+2e2-e3,=-3e1+e2+2e3,=e1+e2-e3,試判斷{}能否作為空間的一個基底?若能,試以此基底表示向量=2e1-e2+3e3;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,且ccosA﹣acosC= b.
(1)其 的值;
(2)若tanA,tanB,tanC成等差數(shù)列,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一年級開設(shè)A,B,C,D,E五門選修課,每位同學(xué)須彼此獨立地選三門課程,其中甲同學(xué)必選A課程,不選B課程,另從其余課程中隨機(jī)任選兩門課程.乙、丙兩名同學(xué)從五門課程中隨機(jī)任選三門課程.
(1)求甲同學(xué)選中C課程且乙同學(xué)未選中C課程的概率;
(2)用X表示甲、乙、丙選中C課程的人數(shù)之和,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)f(x),若存在常數(shù)a≠0,使得x取定義域內(nèi)的每一個值,都有f(x)=﹣f(2a﹣x),則稱f(x)為“準(zhǔn)奇函數(shù)”.給定下列函數(shù):①f(x)= ,②f(x)=(x+1)2;③f(x)=x3;④f(x)=sin(x+1),其中的“準(zhǔn)奇函數(shù)”是(寫出所有“準(zhǔn)奇函數(shù)”的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3-x2+cx+d有極值.
(1)求實數(shù)c的取值范圍;
(2)若f(x)在x=2處取得極值,且當(dāng)x<0時,f(x)<d2+2d恒成立,求實數(shù)d的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(cosωx﹣sinωx,sinωx), =(﹣cosωx﹣sinωx,2 cosωx),設(shè)函數(shù)f(x)= +λ(x∈R)的圖象關(guān)于直線x=π對稱,其中ω,λ為常數(shù),且ω∈( ,1)
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過點( ,0)求函數(shù)f(x)在區(qū)間[0, ]上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 平面平面為等邊三角形,, 過作平面交分別于點,設(shè).
(1)求證:平面;
(2)求的值, 使得平面與平面所成的銳二面角的大小為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com