平行四邊形ABCD中,A(2,-1),B(0,4),對角線的交點(diǎn)為D(4,3),則頂點(diǎn)C的坐標(biāo)是
 
,向量
DB
的坐標(biāo)是
 
考點(diǎn):中點(diǎn)坐標(biāo)公式
專題:直線與圓
分析:由題意可得D為AC的中點(diǎn),設(shè)C(a,b),由中點(diǎn)公式可得C的坐標(biāo),由向量的坐標(biāo)定義可得
DB
坐標(biāo).
解答: 解:由題意可得D為AC的中點(diǎn),設(shè)C(a,b),
4=
2+a
2
3=
b-1
2
,解得
a=6
b=7
,即C(6,7),
DB
=(0,4)-(4,3)=(-4,1),
故答案為:(6,7),(-4,1)
點(diǎn)評:本題考查中點(diǎn)坐標(biāo)公式和向量的坐標(biāo)公式,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+f′(2)(lnx-x),則f′(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知log7(2
2
-1)+log2
2
+1)=a,則log7(2
2
+1)+log2
2
-1)=(  )
A、1+aB、1-aC、aD、-a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P={x|(
1
2
x
1
8
},Q={x|x2<4},則(  )
A、P⊆Q
B、Q⊆P
C、P⊆∁RQ
D、Q⊆∁RP

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下結(jié)論:
(1)命題“存在x0∈R,2x0≤0”的否定是:“不存在x0∈R,2x0>0;
(2)復(fù)數(shù)z=
1
1+i
在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第二象限
(3)l為直線,α,β為兩個不同平面,若l⊥β,α⊥β,則l∥α
(4)已知2013屆九江市七校聯(lián)考(一)的數(shù)學(xué)考試成績ξ~N(90,σ2)(σ>0),統(tǒng)計結(jié)果顯示p(70≤ξ≤110)=0.6,則p(ξ<70)=0.2其中結(jié)論正確的個數(shù)為( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合U={-1,0,1,2,3},∁UA={0,1,2},則集合A=( 。
A、{0,1,2}
B、{-1,0,1,2,3}
C、{-1,3}
D、{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定義在R上的奇函數(shù)y=f(x),滿足f(1+x)=f(1-x),則f(x)的周期為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱柱ABC-A′B′C′中,AB=BB′,S△ABC′=
7
,求正三棱柱的全面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD是正方形,BE∥AC,AC=CE,EC的延長線交BA的延長線于F,求證:AF=AE.

查看答案和解析>>

同步練習(xí)冊答案