【題目】為了迎接第二屆國際互聯(lián)網(wǎng)大會,組委會對報名參加服務的名志愿者進行互聯(lián)網(wǎng)知識測試,從這名志愿者中采用隨機抽樣的方法抽取人,所得成績?nèi)缦拢?/span> , , , , , , , , , , , , , , .
(1)作出抽取的人的測試成績的莖葉圖,以頻率為概率,估計這志愿者中成績不低于分的人數(shù);
(2)從抽取的成績不低于分的志愿者中,隨機選名參加某項活動,求選取的人恰有一人成績不低于分的概率.
【答案】(1) ;(2) .
【解析】試題分析:(Ⅰ)根據(jù)成績,莖為十位數(shù)字5,6,7,8,9,個數(shù)數(shù)字為葉,得莖葉圖,由樣本得成績在90以上頻率為,由此可估計出成績不低于90分的人數(shù);(Ⅱ)抽取的成績不低于80分的志愿者有6人,從中選3人可有20種選法(可用列舉法列出各種可能),然后再數(shù)出恰有一人成績不低于90分的有12種,由概率公式可得概率.
試題解析:(Ⅰ)抽取的15人的成績莖葉圖如圖所示,
由樣本得成績在90以上頻率為,故志愿者測試成績在90分以上(包含90分)的人數(shù)約為=200人.
(Ⅱ)設抽取的15人中,成績在80分以上(包含80分)志愿者為, , , , , ,其中, 的成績在90分以上(含90分),
成績在80分以上(包含80分)志愿者中隨機選3名志愿者的不同選法有:{ , , },{ , , },{ , , },{ , , },{ , , },{ , , },{ , , },{ , , },{ , , },{ , , },{ , , },{ , , },{ , , },{ , , },{ , , },{ , , },{ , , },{ , , },{ , , },{ , , }共20種,
其中選取的3人中恰有一人成績在90分以上的不同取法有:{ , , },{ , , },{ , , },{ , , },{ , , },{ , , },{ , , },{ , , },{ , , },{ , , },{ , , },{ , , }共12種,
∴選取的3人中恰有一人成績在90分以上的概率為=.
科目:高中數(shù)學 來源: 題型:
【題目】下列事件是隨機事件的是( 。
①當x>10時,; ②當x∈R,x2+x=0有解
③當a∈R關于x的方程x2+a=0在實數(shù)集內(nèi)有解; ④當sinα>sinβ時,α>β( )
A.①②B.②③C.③④D.①④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在對人們的休閑方式的一次調(diào)查中,用簡單隨機抽樣方法調(diào)查了125人,其中女性70人,男性55人.女性中有40人主要的休閑方式是看電視,另外30人主要的休閑方式是運動;男性中有20人主要的休閑方式是看電視,另外35人主要的休閑方式是運動.
(1)根據(jù)以上數(shù)據(jù)建立一個列聯(lián)表;
(2)能否在犯錯誤的概率不超過0.025的前提下,認為性別與休閑方式有關系?
(3)在休閑方式為看電視的人中按分層抽樣方法抽取6人參加某機構(gòu)組織的健康講座,講座結(jié)束后再從這6人中抽取2人作反饋交流,求參加交流的恰好為2位女性的概率.
附:
P( ) | 0.05 | 0.025 | 0.010 |
k | 3.841 | 5.024 | 6.635 |
休閑方式 性別 | 看電視 | 運動 | 合計 |
女 | |||
男 | |||
合計 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某區(qū)“創(chuàng)文明城區(qū)”(簡稱“創(chuàng)城”)活動中,教委對本區(qū)四所高中學校按各校人數(shù)分層抽樣,隨機抽查了100人,將調(diào)查情況進行整理后制成下表:
學校 | ||||
抽查人數(shù) | 50 | 15 | 10 | 25 |
“創(chuàng)城”活動中參與的人數(shù) | 40 | 10 | 9 | 15 |
(注:參與率是指:一所學!皠(chuàng)城”活動中參與的人數(shù)與被抽查人數(shù)的比值)假設每名高中學生是否參與”創(chuàng)城”活動是相互獨立的.
(1)若該區(qū)共2000名高中學生,估計學校參與“創(chuàng)城”活動的人數(shù);
(2)在隨機抽查的100名高中學生中,隨機抽取1名學生,求恰好該生沒有參與“創(chuàng)城”活動的概率;
(3)在上表中從兩校沒有參與“創(chuàng)城”活動的同學中隨機抽取2人,求恰好兩校各有1人沒有參與“創(chuàng)城”活動的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)若對于任意,都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為正的常數(shù),函數(shù).
(1)若,求函數(shù)的單調(diào)遞增區(qū)間;
(2)設,求在區(qū)間上的最小值.(為自然對數(shù)的底數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com