【題目】已知為正的常數(shù),函數(shù).
(1)若,求函數(shù)的單調(diào)遞增區(qū)間;
(2)設(shè),求在區(qū)間上的最小值.(為自然對數(shù)的底數(shù))
【答案】(1) , ;(2) .
【解析】試題分析:(1)把代入函數(shù)解析式,由絕對值內(nèi)的代數(shù)式等于0求得的值,由解得的的值把定義域分段,去絕對值后求導(dǎo),利用導(dǎo)函數(shù)求每一段內(nèi)的函數(shù)的增區(qū)間,則時的函數(shù)的增區(qū)間可求;
(2)把的解析式代入,利用與1和的大小比較去絕對值,然后求出去絕對值后的函數(shù)的導(dǎo)函數(shù),利用函數(shù)的單調(diào)性求出函數(shù)在區(qū)間 上的最小值.最后把求得的函數(shù)的最小值寫成分段函數(shù)的形式即可..
試題解析:(1)時, ,
,可得單調(diào)增區(qū)間是,
(2) ,
當(dāng)時,則, ,得;
當(dāng)時, 單調(diào)遞增, ;
當(dāng)時, 在上減, 上增,
綜上所述:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了迎接第二屆國際互聯(lián)網(wǎng)大會,組委會對報名參加服務(wù)的名志愿者進行互聯(lián)網(wǎng)知識測試,從這名志愿者中采用隨機抽樣的方法抽取人,所得成績?nèi)缦拢?/span> , , , , , , , , , , , , , , .
(1)作出抽取的人的測試成績的莖葉圖,以頻率為概率,估計這志愿者中成績不低于分的人數(shù);
(2)從抽取的成績不低于分的志愿者中,隨機選名參加某項活動,求選取的人恰有一人成績不低于分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某圖書公司有一款圖書的歷史收益率(收益率=利潤÷每本收入)的頻率分布直方圖如圖所示:
(1)試估計平均收益率;(用區(qū)間中點值代替每一組的數(shù)值)
(2)根據(jù)經(jīng)驗,若每本圖書的收入在20元的基礎(chǔ)上每增加元,對應(yīng)的銷量(萬份)與(元)有較強線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下5組與的對應(yīng)數(shù)據(jù):
據(jù)此計算出的回歸方程為
①求參數(shù)的估計值;
②若把回歸方程當(dāng)作與的線性關(guān)系, 取何值時,此產(chǎn)品獲得最大收益,并求出該最大收益.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐A-BCD中,AB=a,AC=AD=b,BC=CD=DB=c(a>0,b>0,c>0)該三棱錐的截面EFGH平行于AB、CD,分別交AD、AC、BC、BD于E、F、G、H.
(1)證明:AB⊥CD;
(2)求截面四邊形EFGH面積的最大值,并說明面積取最大值時截面的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C1:x2+y2-2mx-4my+5m2-4=0(m∈R),圓C2:x2+y2=1.
(1)過定點M(1,-2)作圓C2的切線,求切線的方程;
(2)若圓C1與圓C2相交,求m的取值范圍;
(3)已知點P(2,0),圓C1上一點A,圓C2上一點B,求||的最小值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下五個關(guān)于圓錐曲線的命題中:
①平面內(nèi)與定點A(-3,0)和B(3,0)的距離之差等于4的點的軌跡為;
②點P是拋物線上的動點,點P在y軸上的射影是M點A的坐標是A(3,6),則的最小值是6;
③平面內(nèi)到兩定點距離之比等于常數(shù)的點的軌跡是圓;
④若過點C(1,1)的直線交橢圓于不同的兩點A,B,且C是AB的中點,則直線的方程是.
⑤已知P為拋物線上一個動點,Q為圓上一個動點,那么點P到點Q的距離與點P到拋物線的準線距離之和的最小值是
其中真命題的序號是______.(寫出所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的離心率為,左頂點到直線的距離為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線與橢圓C相交于A、B兩點,若以AB為直徑的圓經(jīng)過坐標原點O,試探究:點O到直線AB的距離是否為定值?若是,求出這個定值;否則,請說明理由;
(Ⅲ)在(Ⅱ)的條件下,試求△AOB面積S的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,底面半徑為,母線長為的圓柱的軸截面是四邊形,線段上的兩動點, 滿足.點在底面圓上,且, 為線段的中點.
(Ⅰ)求證: 平面;
(Ⅱ)四棱錐的體積是否為定值,若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com