中得出的一般性結(jié)論是       

解析試題分析:由1=12=(2×1-1)2;
2+3+4=32=(2×2-1)2
3+4+5+6+7=52=(2×3-1)2;
4+5+6+7+8+9+10=72=(2×4-1)2;
………
由上邊的式子可以得出:第n個(gè)等式的左邊的第一項(xiàng)為n,接下來依次加1,共有2n-1項(xiàng),等式右邊是2n-1的平方,
從而我們可以得出的一般性結(jié)論為:n+(n+1)+…+(2n-1)+…+(3n-2)=(2n-1)2(n∈N*)。
考點(diǎn):本題主要考查歸納推理。
點(diǎn)評:歸納推理的一般步驟是:(1)通過觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想).解題時(shí)要注意觀察,善于總結(jié).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

科拉茨是德國數(shù)學(xué)家,他在1937年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù)n,如果n是偶數(shù),就將它減半(即);如果n是奇數(shù),則將它乘3加1(即),不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,一定可以得到1.如初始正整數(shù)為6,按照上述變換規(guī)則,我們可以得到一個(gè)數(shù)列:6,3,10,5,16,8,4,2,1.對于科拉茨猜想,目前誰也不能證明,也不能否定,現(xiàn)在請你研究:
(1)如果,則按照上述規(guī)則施行變換后的第8項(xiàng)為           
(2)如果對正整數(shù)(首項(xiàng))按照上述規(guī)則施行變換后的第8項(xiàng)為1(注:1可以多次出現(xiàn)),則的所有不同值的個(gè)數(shù)為           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

類比平面內(nèi)正三角形的“三邊相等,三內(nèi)角相等”的性質(zhì),可推知正四面體的一些性質(zhì):?“各棱長相等,同一頂點(diǎn)上的兩條棱的夾角相等;?各個(gè)面都是全等的正三角形,相鄰兩個(gè)面所成的二面角相等;?各個(gè)面都是全等的正三角形,同一頂點(diǎn)上的任何兩條棱的夾角相等。你認(rèn)為比較恰當(dāng)?shù)氖?u>           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

觀察下列等式:×=1-××=1-,×××=1-, ,由以上等式推測到一個(gè)一般的結(jié)論:對于n∈N*,××+ +×          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若數(shù)列的通項(xiàng)公式,記,試通過計(jì)算的值,推測出    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

用反證法證明命題“若,則”時(shí),假設(shè)命題的結(jié)論不成立的正確敘述是“      ”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

觀察下列各式:,,,, ,則            

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知,觀察下列不等式:①,②,…,則第個(gè)不等式為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

從1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,推廣到第個(gè)等式為  _.

查看答案和解析>>

同步練習(xí)冊答案