設(shè)函數(shù)
(1)當(dāng)時,求函數(shù)的值域;
(2)若函數(shù)是(-,+)上的減函數(shù),求實(shí)數(shù)的高考資源網(wǎng)取值范圍.

(1)R(2)

解析試題分析:(Ⅰ) 時,
當(dāng)時,是減函數(shù),所以
時,的值域是.                        3 分
當(dāng)時, 是減函數(shù),所以
時,的值域是                           5 分
于是函數(shù)的值域是               6分
(Ⅱ) 若函數(shù)是(-,+)上的減函數(shù),則下列①②③三個條件同時成立:
,是減函數(shù), 于是 
8分
時, 是減函數(shù),則            10 分
,則     11 分
于是實(shí)數(shù)的取值范圍是.                           ………….. 12 分
考點(diǎn):分段函數(shù)值域及單調(diào)性
點(diǎn)評:分段函數(shù)值域是各段函數(shù)值的范圍的并集,第二問中函數(shù)在R上遞減需滿足各段遞減且相鄰的兩段之間也是遞減的,本題中的第三個條件在解題中容易忽略

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x|x-a|-lnx,a∈R.
(Ⅰ)若a=1,求函數(shù)f(x)在區(qū)間[1,e]上的最大值;
(Ⅱ)若f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對于定義在實(shí)數(shù)集上的兩個函數(shù),若存在一次函數(shù)使得,對任意的,都有,則把函數(shù)的圖像叫函數(shù)的“分界線”。現(xiàn)已知,為自然對數(shù)的底數(shù)),
(1)求的遞增區(qū)間;
(2)當(dāng)時,函數(shù)是否存在過點(diǎn)的“分界線”?若存在,求出函數(shù)的解析式,若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當(dāng)時,求的最小值;
(2)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ad/b/18qxf3.png" style="vertical-align:middle;" />,
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/27/5/ydkr32.png" style="vertical-align:middle;" />.
(1)求.      
(2)記   ,若的必要不充分條件,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)).
(1)若函數(shù)處取得極大值,求的值;
(2)時,函數(shù)圖象上的點(diǎn)都在所表示的區(qū)域內(nèi),求的取值范圍;
(3)證明:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的定義域;
(2)判定函數(shù)的奇偶性,并加以證明;
(3)判定的單調(diào)性,并求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間和極值;
(Ⅱ)若在區(qū)間上是單調(diào)遞減函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

,求。

查看答案和解析>>

同步練習(xí)冊答案