已知函數(shù).
(1)求函數(shù)的定義域;
(2)判定函數(shù)的奇偶性,并加以證明;
(3)判定的單調(diào)性,并求不等式的解集.
(1) (-2,2)(2)奇函數(shù)(3)
解析試題分析:解:(1).,所以函數(shù)f(x)的定義域?yàn)?(-2,2) 4分
(2).任取x∈(-2,2),有,所以函數(shù)f(x)是奇函數(shù)..8分
(3).∵在(-2,2)上單調(diào)遞增,∴f(x)=
在(-2,2)上單調(diào)遞增(只要判斷正確,就給1分) 9分
所以 10分
∴原不等式 12分
所以不等式的解集為:.(或(1,)) 13分
考點(diǎn):函數(shù)的單調(diào)性和奇偶性
點(diǎn)評(píng):解決的關(guān)鍵是根據(jù)函數(shù)的概念和性質(zhì)來分析得到,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)是定義在R上的奇函數(shù),并且當(dāng)x∈(0,+∞)時(shí),f(x)=2x.
(1)求f(log2)的值;
(2)求f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是函數(shù)的一個(gè)極值點(diǎn)。
(1)求與的關(guān)系式(用表示),并求的單調(diào)區(qū)間;
(2)設(shè),若存在,使得成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(1)當(dāng)時(shí),求函數(shù)的值域;
(2)若函數(shù)是(-,+)上的減函數(shù),求實(shí)數(shù)的高考資源網(wǎng)取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若時(shí),取得極值,求實(shí)數(shù)的值;
(2)求在上的最小值;
(3)若對(duì)任意,直線都不是曲線的切線,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)。
(1)若在處取得極值,求的值;
(2)求的單調(diào)區(qū)間;
(3)若且,函數(shù),若對(duì)于,總存在使得,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),且對(duì)任意的實(shí)數(shù)都有成立.
(1)求實(shí)數(shù)的值;
(2)利用函數(shù)單調(diào)性的定義證明函數(shù)在區(qū)間上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
(1)判斷函數(shù)的奇偶性;
(2)若在區(qū)間是增函數(shù),求實(shí)數(shù)的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com