(本小題滿分12分)
已知函數(shù)
(1)判斷函數(shù)的奇偶性;
(2)若在區(qū)間是增函數(shù),求實(shí)數(shù)的取值范圍。

(1)當(dāng)時(shí),為偶函數(shù);當(dāng)時(shí),既不是奇函數(shù)也不是偶函數(shù).
(2)

解析試題分析:(1)當(dāng)時(shí),為偶函數(shù);當(dāng)時(shí),既不是奇函數(shù)也不是偶函數(shù).
(2)設(shè),
,
,
要使在區(qū)間是增函數(shù)只需,
恒成立,則。
另解(導(dǎo)數(shù)法):,要使在區(qū)間是增函數(shù),只需當(dāng)時(shí),恒成立,即,則恒成立,
故當(dāng)時(shí),在區(qū)間是增函數(shù)。
考點(diǎn):函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系;函數(shù)奇偶性的判斷.
點(diǎn)評(píng): 此題考查函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,若大于0,則為增函數(shù);若小于0,則為減函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的定義域;
(2)判定函數(shù)的奇偶性,并加以證明;
(3)判定的單調(diào)性,并求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
①當(dāng)時(shí),求曲線在點(diǎn)處的切線方程。
②求的單調(diào)區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

,求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)在點(diǎn)(1,f(1))處的切線方程為y = 2.
(I)求f(x)的解析式;
(II)設(shè)函數(shù)若對(duì)任意的,總存唯一實(shí)數(shù),使得,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(Ⅰ)若曲線在點(diǎn)處與直線相切,求的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間與極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
已知函數(shù),函數(shù)的圖象在點(diǎn)處的切線平行于軸.
(1)確定的關(guān)系;
(2)試討論函數(shù)的單調(diào)性;
(3)證明:對(duì)任意,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
設(shè)函數(shù),曲線在點(diǎn)處的切線方程
(1)求的解析式,并判斷函數(shù)的圖像是否為中心對(duì)稱圖形?若是,請(qǐng)求其對(duì)稱中心;否則說(shuō)明理由。
(2)證明:曲線上任一點(diǎn)的切線與直線和直線所圍三角形的面積為定值,并求出此定值.
(3) 將函數(shù)的圖象向左平移一個(gè)單位后與拋物線為非0常數(shù))的圖象有幾個(gè)交點(diǎn)?(說(shuō)明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
設(shè)函數(shù).
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)若不等式恒成立,求實(shí)數(shù)m的取值范圍.
(3)若對(duì)任意的,總存在,使不等式成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案